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Supplementary Fig. 1 | Characterization of system accuracy and precision. a, Workflow on 5 
characterizing the accuracy of volume measurements from fluorescence exclusion by comparing fxSMR 6 
results to coulter-counter measurements. b, Median volume of each cell line (n = 14 biological replicates) 7 
from fxSMR (y-axis) vs coulter-counter (x-axis). Median cell diameter ranges 12.6 to 21.0 μm. The red line 8 
indicates a linear regression fit. c, SMR resonant frequency responses are calibrated using five populations 9 
of polystyrene beads with known sizes (NIST traceable). d, Mean SMR frequency shift vs mean expected 10 
buoyant of the polystyrene bead populations. The right y-axis histogram depicts the particle size probability 11 
distributions. n = number of particles. The red line indicates a linear regression fit. e, Experimental setup 12 
used to determine the precision of single-cell density measurement for 3 types of particles (hydrogel 13 
particles, IL-3 depleted FL5.12 cells, and naïve B cells; mean and std of the trapped particles’ volumes are 14 
reported). f, C.V. of density plotted against particle size. Particle diameter ranges from 12.5 to 14.4 μm for 15 
hydrogel, 8.0 to 10.3 μm for FL5.12 cells, and 6.7 to 7.0 μm for B cells. g, C.V. of volume (green) and mass 16 
(orange) separately plotted against C.V. of density. Solid lines indicate linear regression results. h, 17 
Simulation design to evaluate the effect of measurement noise on the observed density heterogeneity of a 18 
cell population. i, Simulation results from input population CV. The X-axis represents the input variable, 19 
namely input 3 from (h). The Y-axis represents the output variable, which is the observed population CV after 20 
accounting for the measurement noise. Line color indicates the simulation result when the noise term (input 21 
4 from (h)), is equal to the average noise values in (f). The blue line indicates hydrogel particles and the red 22 
line indicates the quiescent FL5.12 and B cells. Observed population density CV of T cells from Fig. 3 are 23 
overlaid on the line profiles, which represent the corresponding noise levels expected in each T population 24 
due to their difference in cell size. Schematics in this figure were created in BioRender. 25 
 26 
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 27 

Supplementary Fig. 2 | Characterization of density mass and volume distributions of proliferating 28 
mammalian cell lines. a, Kolmogorov–Smirnov test on the mean goodness of fit on bootstrapped density 29 
distribution, when using stable, normal, and lognormal distribution fits; A p-value > 0.05 means the 30 
distribution is well-fitted. b, Kolmogorov–Smirnov test on the mean goodness of fit on bootstrapped buoyant 31 
mass distribution; Red bar denotes p-value of 0.05. c, Kolmogorov–Smirnov test on the mean goodness of fit 32 
on bootstrapped volume distribution; Red bar denotes p-value of 0.05. d, Skewness of each cell line when 33 
excluding 1% of outliers. e, Kurtosis of data from hydrogel particles (Supplementary Fig. 1e).  f, Kurtosis of 34 
cells with light buoyant mass (lower 50% of the population, in green) and heavier buoyant mass (upper 50% 35 
of the population, in yellow) for each cell line. For (a-e), n = 3 replicates for FL5.12, L1210, s-Hela, THP-1; n 36 
= 2 replicates for BAF-3.  37 
 38 
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Supplementary Fig. 3 | Density vs buoyant mass of proliferating mammalian cell lines. Each grey point 49 
indicates a single cell; Red lines show moving median density as function of buoyant mass; The filter window 50 
is ± 5 pg and the step size is 0.1 pg; Shaded red regions indicate ± standard deviation of density in the 51 
filtered population; n values refer to the number of individual cells. 52 
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Supplementary Fig. 4 | Density dynamics of human lymphocytes during transition between 58 
quiescence and proliferation. a. Scatter plots of mass vs density showing the T cell dynamics post 59 
activation for donor 2; Blue areas indicate the density range of quiescent T cells between 1st and 99th 60 
percentile of the density distribution; C.V of densities are 1.035%, 0.492%, 0.436%, 0.445% accordingly; n = 61 
number of cells. b, Measurement principle of average active water content using Van’t Hoff’s osmosis 62 
principle; Dotted line indicates a linear fitting and the intercept indicates inactive volume (total volume minus 63 
the active water content). c, Representative median cell volume of one donor post activation, at different 64 
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osmolarities; Dotted lines indicate linear fitting results. d, Fractional active water content (active water 65 
content / total cell volume) for T cells from both donors as a function of time. e, Representative scatter plots 66 
of mass vs density showing B cells at day 0 and 3 post activation for samples obtained from donor 2 and 3; 67 
Blue areas indicate the density range of quiescent B cells similar to (a). C.V. of density at day 0 and 3 are 68 
0.998% and 0.495% for donor 2, 0.798% and 0.737% for donor 3 accordingly; n = number of cells. f. 69 
Representative flow cytometry plots showing the gating strategy for CD86+ activated naïve B cells 70 
population. The immunophenotype of stimulated (top panels) or unstimulated (bottom panels) naïve B cells 71 
after 3 days of cell culture is shown. Numbers adjacent to the gates represent cell frequencies. g. Chi-square 72 
variance test on T cell and B cell density during activation. Each number indicates the p-value when 73 
comparing the variance of density distribution to that of the day 0 population. The null hypothesis is that two 74 
distributions have the same variance, and the alternative hypothesis is that the sample distribution has a 75 
smaller variance than the day 0 condition. The p-value of 0 refers to a p-value that is lower than what our 76 
calculation software (MATLAB) can determine. Schematics in this figure were created in BioRender. 77 
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Supplementary Fig. 5 | Density dynamics of murine pro-B lymphocytic cell line FL5.12 during cell 92 
cycle exit induced by growth factor depletion. a, Box and whisker plots of FL5.12 cell volume, buoyant 93 
mass and density vs time after removing IL-3 supplement from the culture media; Each row shows a 94 
replicate condition; n values refer to the number of individual cells. b, Density C.V. vs time after IL-3 95 
depletion; p-value = 0.0087 from two-tailed paired parametric t test between 0 and 48 hours; n = 3 biological 96 
replicates. c, Fractional active water content (active water content/total cell volume) vs time after IL-3 97 
depletion; p-value is derived from two-tailed paired parametric t test between 0 and 48 hours; n = 3 biological 98 
replicates. 99 

 100 

 101 
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Supplementary Fig. 6 | Optical setup for fluorescence exclusion-based volume measurements of 103 
cells in flow. a, Schematics of an optical setup enabling multi-band fluorescence intensity measurements; 104 
Each colored light indicates light within a specific wavelength range; FITC-dextran fluorescence exclusion 105 
measurements are detected by PMT 2. b, Layout of the microfluidic channel design of the SMR chip. c, 106 
Channel dimension at the entrance to the SMR cantilever, where fluorescence measurements are acquired. 107 
The green illuminated region indicates the total detected volume. This volume is determined by fixed channel 108 
width and height, and an adjustable length controlled by an optical slit. The length is typically set to be 109 
slightly above the largest expected particle size in the sample population. Schematics in this figure were 110 
created in BioRender. 111 
 112 
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Supplementary Fig. 7 | fxSMR resolves distinct clusters of viable and dead cells. a, Schematic on 124 
experimental design for viability labeling of cycling HL60 cells and downstream fxSMR measurements. b, 125 
Scatter plot of viability vs buoyant mass on a population of HL60 cells; n value refers to the number of 126 
individual particles. c, Scatter plot of mass-normalized viability vs buoyant mass on the same population. d, 127 
Scatter plot of density and buoyant mass on the same population of cells; Color projection indicates the 128 
value of mass-normalized viability labeling; Dark red cluster indicates live cells and dark blue cluster 129 
indicates dead cells and debris. Schematics in this figure were created in BioRender. 130 
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Supplementary Fig. 8 | Simulated relationship between changes in cell density and cell volume or 134 
molecular crowding level. Dry volume is dry density of the cell are treated as constants (200 fL and 1.4 135 
g/mL accordingly). Molecule X is a hypothetical molecule with a defined concentration of 1 molecule per fL 136 
when the cell density is at 1.08 g/mL. Concentration of molecule is calculated by total molecule number (a 137 
constant) divided by cell volume.  138 
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Supplementary Fig. 9 | Design of SMR (mass) and PMT (volume) data pairing algorithm. a, Schematic 163 
of temporal sequence for mass signals (brown) and volume signals (green) when aligned by their time 164 
stamps; Δt denotes the time difference between a SMR event i and a neighboring PMT signal. b, Schematic 165 
of the first step of the pairing algorithm: for each event in (a), an array of Δt is computed where each element 166 
is the Δt between this SMR event and a PMT signal; The length of the array is the total number of PMT 167 
signals measured in a sample. c, Schematic of the second step of pairing algorithm: a histogram of all the Δt 168 
values from all events in (b) is displayed, which results in a unimodal distribution of Δt; A user-defined range 169 
of Δt will be used for pairing. d, Schematic of the last step of the pairing algorithm: all SMR events that have 170 
exactly one Δt value that is within the user-defined range from (c) will be selected and paired to the 171 
corresponding PMT. Schematics in this figure were created in BioRender. 172 
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Supplementary Note 1. Size dependent density measurement uncertainty and its effect on observed 185 
density heterogeneity.  186 

To understand the effect of particle size on measurement uncertainty, we performed single-particle trapping 187 
experiments where we profiled small, quiescent cells including IL-3-starved FL5.12 cells and naive B cells 188 
(Supplementary Fig. 1e). These quiescent cells are ~5-10 times smaller than the hydrogel particles used to 189 
characterize system precision in Fig. 1, and they are in the size range of quiescent T cells. By repeatedly 190 
measuring the same cell within the device, we found that density measurements of small quiescent cells 191 
have an average C.V. of 0.29% (Supplementary Fig. 1f) compared to an average C.V. of 0.03% for the 192 
larger hydrogel particles. Although the C.V. increased, it is still considerably lower than the C.V. we 193 
measured for quiescent T cells of ~1% (Fig. 3), which indicates we are measuring inherent biological 194 
variability. 195 

The repeat measurements of single particles show that density measurement error increases as particle size 196 
decreases (Supplementary Fig. 1f). We also found that density measurement error had a strong correlation 197 
with volume measurement error (R2 = 0.9660), but no correlation with buoyant mass measurement error (R2 198 
= 0.0640) (Supplementary Fig. 1g). This indicates that the increase in density C.V. for smaller particles is 199 
due to higher volume measurement uncertainty. This is likely caused by the geometric constraint of the 200 
fluorescence detection region. Since the channel has a fixed height of 20 μm (Supplementary Fig. 6c), 201 
signals from smaller particles are more prone to be affected by variations in the flow path, particularly along 202 
the vertical axis.   203 

Since the average noise value of small quiescent cells is higher than what was observed in the large 204 
hydrogel particles, we performed a simulation to more deeply understand the degree to which the 205 
measurement uncertainty affects the observed cell density heterogeneity in a population (Supplementary 206 
Fig. 1h). The simulation first generated cell density distributions with a predefined mean and varying levels of 207 
standard deviations, which purely modeled the inherent biological variability. It then generated single-cell 208 
density values with added measurement noise. The noise term followed a Gaussian distribution with a mean 209 
of zero and a standard deviation proportional to each density value (by assuming a fixed C.V.), which reflects 210 
the empirically determined measurement uncertainty. This approach enabled quantitative analysis of how the 211 
measured variability in cell density data is affected by inherent biological variability in cell populations, as 212 
opposed to measurement uncertainty. As shown in Supplementary Fig. 1i, the simulation reveals that when 213 
the cell population has low density variability (<0.4%), the observed density C.V. is more influenced by 214 
measurement noise. At higher density variability (>0.7%), the population C.V. with noise is roughly linear to 215 
the population C.V. without noise. This suggests that the measurement noise observed in the small cells has 216 
less influence when there is high intrinsic biological heterogeneity. After accounting for measurement 217 
uncertainty, the simulation shows that the 1% density C.V. that we measured in quiescent T cell populations 218 
translates to a population C.V. of ~0.96% (Supplementary Fig. 1i). This is higher than the ~0.5% C.V. 219 
observed in proliferating T cell density distributions. 220 

 221 

Supplementary Note 2. Viable cell gating on fxSMR data.  222 

Viable cell classification for all single-cell measurements was done by manual gating using buoyant mass 223 
and density. This gating strategy was designed based on the assumption that cell buoyant mass and density 224 
could distinctly resolve live and dead cells. We validated this approach by first staining a population of HL60 225 
cells with a standard viability dye that positively labels dead cells (ThermoFisher, 65-0863-14) and then 226 
performing a fxSMR measurement where mass, volume, density and viability dye emission level were 227 
captured for every cell (Supplementary Fig. 7a). The viability dye has an excitation/emission range of 228 
405/450 nm, which does not overlap with the FITC-dextran used for measuring cell volume. Simultaneous 229 
detection of both fluorescence signals was achieved by the multi-band fluorescence detection setup of the 230 
fxSMR system (Supplementary Fig. 6a). Since the intensity of the viability label had a correlation with cell 231 
size, we performed a normalization step where the label intensity of each cell was divided by its buoyant 232 
mass, which largely removed the size-dependency of the viability label and can differentiate between live 233 
and dead cells at a threshold value of 0.2 a.u in mass-normalized viability signal (Supplementary Fig. 7b,c). 234 
When visualizing the mass-normalized viability signal together with cell mass and density, we observed that 235 
the clusters of viable and dead cells were distinctively resolved by cell mass in combination with cell density 236 
(Supplementary Fig. 7d). 237 

 238 

 239 
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Supplementary Note 3. Relationship between cell density and molecular crowding.  240 

To understand the quantitative relationship between cell density and molecular crowding, we performed a 241 
simulation which shows that a small change in cell density (<5%) can reflect radical changes in the 242 
physicochemical milieu of the cytoplasm (Supplementary Fig. 8). In this simulation, cell density changes 5% 243 
purely due to water uptake, which indicates an approximately 2-fold increase in cell volume, thereby diluting 244 
all intracellular molecular components by ~2-fold. Such an intracellular dilution would influence, for example, 245 
phase transitions and enzymatic reaction rates.  246 

A number of recent publications have shown that osmotically induced cell volume changes, which 247 
correspond to ≤ 5% cell density change, can radically alter phase transitions in a variety of mammalian 248 
models1–4, thereby impacting processes involving nucleolus, processing bodies, stress granules, and other 249 
phase-separated organelles. For example, to achieve a 2-fold change in cell volume via osmotic shock, 250 
extracellular osmolarity has to change ~2-fold, according to Van Hoff’s law. Thus, a 5% density change could 251 
have similar consequences as exposure of cells to 150 mOsm or 600 mOsm environments (assuming cells 252 
normally reside in a 300 mOsm environment). Studies on osmolarity-induced phase transitions have shown 253 
that even a small change in osmolarity (e.g. change of 50 mOsm, or 0.78% change in cell density) can alter 254 
phase transitions1,2.  255 

The 2-fold volume change due to water uptake can also impact enzymatic reaction rates. Let’s imagine an 256 
enzymatic reaction where the substrate concentration is significantly below the Km of the reaction, as is the 257 
case for several enzymes in the central carbon metabolism5. According to Michaelis–Menten reaction 258 
kinetics, the initial reaction rate (v0) for such cases can be estimated as follows: 259 

                                                            𝑣𝑣0 ≈
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐
𝐾𝐾𝑀𝑀

[𝐸𝐸][𝑆𝑆] , 𝑖𝑖𝑖𝑖 [𝑆𝑆] ≪ 𝐾𝐾𝑀𝑀                                                                 (1) 260 

where [E] and [S] represent the enzyme and substrate concentrations, respectively. A 2-fold volume increase 261 
would decrease such enzymatic reaction rates ~4-fold. We note that this is a simplified example, which does 262 
not take into account the complex and crowded nature of the intracellular environment6 and that not all 263 
enzymes operate in a substrate limited regime. Yet, these calculations highlight that a 5% change in cell 264 
density can have major consequences for cell function and physiology. 265 

 266 

Supplementary Note 4. Data analysis pipeline.  267 

Raw data processing was carried out in MATLAB. Frequency peak analysis of raw SMR and PMT signals 268 
was processed as in previous studies7,8. For fluorescence exclusion volume measurements, PMT data were 269 
processed by a median filter and a moving-average filter (filter size = 5 data points for both filters). Event 270 
identification was based on negative thresholding on the fluorescence level, as defined by a decrease in 271 
fluorescence that is larger than three times the standard deviation of the baseline. Volume signals were 272 
computed by dividing the absolute value of the fluorescence decrease by its surrounding baseline signals 273 
that are within 100 data points from the identified peak. 274 

We then identify and remove low-confidence volume signals to account for a number of factors that affect 275 
measurement quality. These factors include flow rate variations, out-of-focus events as well as unequal 276 
distribution of dye molecules around the cell. While the intensity of fluorescence emission from the excited 277 
region mainly depends on its volume, alterations in flow rate may cause differences in intensity if the dye 278 
molecules are prone to photobleaching. Similarly, out-of-focus event may cause changes in emission 279 
intensity when the volume of the excited region remains unchanged. Both factors reduce the quality of the 280 
detected signals but can be identified by a change in the baseline fluorescence intensity level. A change in 281 
flow rate will create a slope in the baseline, and out-of-focus will result in a change in average baseline 282 
intensity. In addition, signal quality can be reduced by a change in baseline fluorescence levels before and 283 
after cell passing, because dye molecules can accumulate near the cell as it passes through a constriction9. 284 
This bias can be identified by a significant change in baseline intensity after cell passing.  285 

Low-confidence volume signals are identified and removed from the output given a predefined list of criteria: 286 
(1) a slope in baseline with an absolute value higher than 0.002 V/point; (2) baseline values that substantially 287 
differ from the median baseline value of the first 30% of identified peaks (+/- 10% of median baseline 288 
amplitude); (3) signals that has a substantial difference between the left and right-side signal baselines 289 
(larger than 5% of the peak amplitude). 290 

Data pairing between SMR and PMT signals was carried out after independent peak identification of SMR 291 
and PMT signals (Supplementary Fig. 9). Each SMR or PMT event had a distinct time stamp in computer 292 
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real-time collected in the LabView software. We start by aligning one directional array for SMR and PMT time 293 
stamps, where the length of the array was the number of identified events, and each element was the 294 
timestamp of one distinct event. We assumed that every event in the SMR array should have a matching 295 
event from the PMT, i.e. the mass signal and volume signal of the same cell, but with a time delay because 296 
the PMT signal was acquired at a different location than the SMR signal (Fig. 1a). The time difference 297 
between the two can vary due to slightly different flow velocities from one cell to another. However, on a 298 
populational level, we expected the time difference to have unimodal distribution since the pressure settings 299 
were identical through each experiment. By identifying the range of this distribution, we were able to uniquely 300 
pair the SMR signals with the PMT signals. The pairing pipeline started with computing the time difference 301 
(Δt) between each SMR event and every PMT event, which resulted in m×n number of Δt, where m and n 302 
are the total numbers of SMR and PMT events, respectively. A histogram of all Δt values was then 303 
generated and the distribution typically centered between -10 and +10 ms depending on the exact position of 304 
the optical detection region in comparison to the SMR cantilever. Because the average time between 305 
consecutive cells was around 120 ms, there is a very low likelihood that two subsequent signals appear 306 
within +/- 10 ms. A manual selection of pairing range on the Δt histogram was required due to sample-to-307 
sample variability in flow rate. Then SMR and PMT data were paired if there was a unique one-to-one 308 
matching within the user-defined Δt pairing window. Doublet events, where there is more than one PMT or 309 
SMR signal in the same Δt window, were excluded. The pairing algorithm typically yielded a pairing rate of 310 
~90% for the SMR signals in a given measurement. 311 

 312 

 313 
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