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Supplementary Table 1: Examples from the literature of measurement times for various types of 
microfluidic detectors. 

 

 

 

 

Type of 
detector 

Measurement approach Measurement 
time (ms) 

Reference 

Electrical   
Impedance spectroscopy 

 
60  

 
[1] Cheung et al. 

Mechanical 

 

 
  

 

Optical stretching 

Solid constriction (optical readout) 
Solid constriction (mass readout) 

Hydrodynamic constriction 

Hydrodynamic stretching  

 

1,000 

100 to 1,000 
100 to 1,000 

10 

0.1 

 

[2] Guck et al. 

[3] Rosenbluth et al. 
[4] Byun et al. 

[5] Otto et al. 

[6] Gossett et al. 

Optical   

Image cytometry 

Image cytometry 

Raman spectroscopy 

 

10 

100 to 1,000 

10,000 

 

[7] George et al. 

[8] Wang et al. 

[9] Dochow et al. 



 

  
Supplementary Figure 1: Schematic of a serial suspended microchannel resonator (sSMR) platform 
(a). The device consists of an array of SMR buoyant mass sensors placed periodically along the length 
of a long (50 cm) microfluidic measurement channel. The array is flanked on either side with two 
sampling channels with independent control of upstream and downstream pressures. For single-cell 
transit time measurements, the first cantilever of the sSMR was used to detect cell entrance in to the 
array (inset). The schematic of this cantilever demonstrates a cell flowing through the cantilever (left) 
and the corresponding resonant frequency measurements associated with these positions (right). (b) 
Representative plot showing the single-cell frequency measurements at various stages of filtering 
described in the Methods. The binary occupancy readout (red), shown here with the same time scale 
as the frequency data, indicates when the frequency shift is below the specified occupancy threshold 
(dashed line).  



 

 

Supplementary Figure 2: Rare cell measurement of BaF3 cells (a) Dot plot of raw mass versus time 
data for BaF3 cells measured at each cantilever in a 12 cantilever sSMR device. Colored dots represent 
each individual cantilever, with the progression proceeding from black to blue to green to red as you 
move from the first to the last cantilever on the flow path. Single-cell trajectories are subjected to a 
linear fit to extract MAR. Cells were seeded by serial dilution at a density of 2.7x103 cells/mL, with ~270 
total cells in 100 µL. 165 of the 270 cells (61%) were loaded into the array after 3 hours of measurement. 
(b) Dot plot of MAR versus mass for the same BaF3 cells.  

  



Supplementary Note 1: Complete description of each function triggered by ROIs 

State Name Description 
[0] ‘Loading flow’ Sampling channel upstream and downstream pressures are equal 

[1] ‘Queue forward’ Sampling channel upstream pressure is slightly higher than downstream pressure 
but nodal pressure at measurement channel entrance remains the same as [0] 

[2] ‘Queue backward’ Same as [1], with reversed sampling flow direction (downstream pressure higher 
than upstream) 

[3] ‘Major forward’ Sampling channel upstream (cell sample reservoir) pressure is significantly 
higher than downstream pressure, but nodal pressure remains the same as [0] 

[4]‘Major backward’ Same as [3], with reversed sampling channel flow direction 

[5] ‘Array kickback’ Significant flow reversal in the measurement channel such that particles in the 
measurement array backflow towards the loading bypass  

[6] ‘Array backflow’ Minor flow reversal in the measurement channel  

[7] ‘Seek forward’ Sampling channel upstream pressure is moderately higher than downstream 
pressure, but nodal pressure remains the same as [0] 

[8] ‘Seek backward’ Same as [7], with reversed sampling channel flow direction 
 

Supplementary Table 2: Pressure states involved in active loading 

 
Supplementary Figure 3: Schematic of active loading code 

 



Supplementary Note 2: Automated particle classification 

   
Supplementary Figure 4: Examples of particles automatically classified as a ‘Singlet’ (A), ‘Doublet’ (B), 

‘Multiple Singlet’ (C), and ‘Debris’ (D).  

 

Supplementary Figure 5: Particle classification diagram depicting the automated particle classification 
logic. The background image is created by calculating the median value for each pixel from the past X frames, 
where X is a user designated control. The present frame is subtracted from the median image, effectively leaving 
behind an image showing only objects in motion. A user inputted pixel threshold is subtracted from the subtracted 
image, and the resultant values are coerced to a value between 0 and 255. The ‘AutoBinaryThreshold’ subVI is 
used to transform this image into a binary image, with pixel values of 0 or 1. Morphology of the resultant image 
is smoothed with automedian, dilate, convex hull, and hole filling subVIs. The ‘Particle Analysis Report’ subVI 
then identifies continuous pixel regions with a value of 1, and generates a list of these particles. Any particle 
outside of a user determined size (number of pixels) threshold is removed from the list. If there are no particles 
remaining, the triggering event is determined to have been ‘Debris’. If there are more than one particles within 
the size threshold then the triggering event is determined to have been ‘Multiple Singlets’. If only one particle is 
within the size threshold then the X:Y ratio of the bounding rectangle is used to determine whether the particle is 
a doublet. Particles with an X:Y ratio below the user designated threshold and above the reciprocal of the treshold 
are considered to be ‘Singlets’. Particles with an X:Y ratio above the user designated threshold or below the 
reciprocol of the threshold are determined to be ‘Doublets’. 

  

A B C D 



Supplementary Note 3:  Throughput enhancement provided by Active Loading 

Here we present the throughput improvements that could be achieved by 
implementing active loading for various single-cell applications that have been 
described previously in the literature. For this purpose, we define the improvement 
metric as the ratio between the effective sampling flow rate and the flow rate that 
would have been achieved in the measurement channel without active loading. As 
we describe below, several assumptions are made in order to estimate the effects 
of detection and pneumatic control delay in the sampling channel and the ratio of 
cross sections of the measurement and sampling channels.  

Since each detection event during the ‘seek’ operation triggers a loading cycle 
(Supplementary Video 1), the throughput with active loading is a function of cell 
concentration in the sample. Within the non-zero time frame of the loading cycle, 
the seeking flow is stopped, reducing the effective sampling flow rate (𝑄𝑡). We define the effective flow rate as:  

 𝑄𝑡 =
𝑉
𝑇𝑡

 (1) 

where 𝑉 and 𝑇& are the total sample volume to be measured and total duration of sampling, respectively. Assuming 
a time frame of 𝑡' is required to load each cell in to the measurement channel from the moment of detection, we 
can calculate the total measurement duration (𝑇&) as a function of cell concentration (𝐶) as follows: 

 𝑇& = 𝑇* + 𝐶𝑉𝑡'  (2) 
where 𝑇* is the total time required to flow the same sample of volume 𝑉 at a flow rate of 𝑄𝑠 with no particle-
detection. Inserting Equation (2) into (1), we get 

 𝑄𝑡 =
𝑉

(𝑇𝑠 + 𝐶𝑉𝑡𝐿)
=

1
1
𝑄𝑠

+ 𝑡𝐿𝐶
 (3) 

This is a general equation defining the effective flow rate provided by active loading, when the detection and 
loading events are taken into account. We model the time required to load each cell into the measurement channel 
assuming non-ideal system components with non-zero time responses. In the figure below, we illustrate the 
change of flow rate in the sampling channel as a function of time during a cell loading cycle. The loading cycle 
starts when a cell is detected in the sampling channel as it is flowing at a seeking flowrate of 𝑄𝑠. The latency due 
to the pneumatic instrumentation and the detection scheme cause a detected cell to miss the entrance of the 
measurement channel, creating an excess volume (shaded) to be sampled into the measurement channel before 

Supplementary Figure 6: 
Active loading detection region 

Supplementary Figure 7: Timeline of Active Loading events 



the detected particle. For simplicity, we define two fundamental time delays dictated by the detection time (𝑡0) 
and pneumatic latency (𝑡1). We assume that before the cell enters the measurement channel, all excess volume is 
loaded into the measurement channel at a flow rate of 𝑄𝑚, which determines the time required to back flow a cell 
into the measurement channel (𝑡3). Since the sampling into the measurement channel is from downstream only, 
the detection region is centered at the channel entrance, and the pneumatic response is linear in time, we can 
approximate the loading time of a detected cell as: 

 𝑡' =
𝑡0
2 +

3𝑡1
2 + 6

𝑡0
2 +

𝑡1
2 7

𝑄*
𝑄8

=
𝑡0 + 3𝑡1

2 +
9𝑡0 + 𝑡1:𝑄*

2𝑄8
 (4) 

Here 𝑄8 is the flow rate in the measurement channel and inversely proportional to the measurement time 
required for the targeted application (or proportional to the measurement bandwidth) and kept constant at all times 
during the seeking and loading cycles. For the purpose of this analysis, we assumed that the backflow rate is 
identical to the measurement flow rate. However, faster rates could be utilized with more complicated control 
algorithms, which would require the replacement of 𝑄𝑚 in Equation (4) above. As the merit of active loading 
relies on achieving 𝑄𝑠 ≫ 𝑄𝑚,  Equation (4) simplifies to  

 𝑡' ≈
(𝑡0 + 𝑡1)𝑄*

2𝑄8
     (5) 

Using Equations (3) and (5), we calculate the net improvement of active loading as a function of system and 
sample variables as: 

 
𝑄&
𝑄8

=
1

𝑄8
𝑄*

+
(𝑡0 + 𝑡1)𝐶𝑄*

2

 (6) 

Equation (6) shows that the throughput improvement for a given sample concentration is a function of the 
seeking flow rate. Due to the non-zero time response of the detector and pneumatics, the seeking flow rate has an 
optimal value to achieve the maximum throughput improvement for a given cell concentration. We calculate this 
optimal rate (𝑄*=) as a function of system variables, sample concentration and measurement flow rate requirement 
by taking the derivative of Equation (6), equating it to zero and solving for 𝑄𝑠: 

 𝑄*= = >
2𝑄8

(𝑡0 + 𝑡1)𝐶
 (7) 

Finally, we calculate the throughput improvement from active loading at the optimal seeking flow rate by 
inserting Equation (7) into (6): 

 
𝑄&
𝑄8

?
@A=@AB

=
1

C2(𝑡0 + 𝑡1)𝐶𝑄8
 (8) 

Equation (8) demonstrates that the benefit of active loading increases for samples that are low in concentration, 
for applications where a slow measurement flow rate is necessary and for measurement systems with low latency.  

In the equations above, 𝑡0 is defined by the method utilized for detecting cells in the sampling channel. 
Although faster detection methods such as electrical, capacitive, interferometric could be utilized here, we will 
focus on detection by imaging as it provides additional benefits for active loading, e.g. debris rejection, cell shape 
determination, fluorescence measurements etc. For the special case of the optical detection using a camera, we 
will conservatively assume that 4 frames are necessary to successfully detect a cell at the shutter speed of the 
camera, setting 𝑡0 = 4/𝑓G. Therefore, the frame rate and field of view puts an upper bound on 𝑄𝑠. Using Equations 
(6-8), we plot below the throughput improvement for a range of sample concentrations for the system used in this 



paper (Current System) and for a system with the same channel dimensions but faster detection and pneumatic 
control (Fast System). For these two scenarios, we use the specifications listed in the adjacent table. We assume 
the size of the detection region to be centered around the measurement channel entrance and 200 microns long. 
Therefore, a camera that has a faster shutter speed would enable faster seeking flow rates, increasing the 
throughput improvement for samples with low concentration of cells.  

The plot below shows that the throughput improvement is a strong function of sample concentration and that 
a more than 100-fold improvement is theoretically possible for low concentration samples. Although the benefit 
of active loading drops for samples that are concentrated, fast pneumatics and detection schemes could still enable 
a more than 10-fold improvement over traditional methods.  

 
 
Finally, we determined the extent to which other single-cell microfluidic sensors could benefit from the active 

loading approach. In the table below, we estimate theoretical throughput improvements possible with active 
loading if applied to various single-cell measurement techniques. For conducting a fair comparison, we assumed 
the same flow speed that was used in the corresponding reference is achieved in the measurement channel we 
utilized in this work. Then we calculated the optimal seeking flow rate for our current system and a fast system. 
In the event that the optimal seeking flow rate exceeded what is achievable with the sampling channel camera we 
instead used the maximum achievable flow rate.  

 
Supplementary Table 4: Throughput improvement (numbers in bold) for applying active loading to previously published 
single-cell measurements. Throughput improvement is defined by the ratio between the effective sampling flow rate and the 
flow rate that would have been achieved in the measurement channel without active loading. A value of unity indicates that 
there would be no improvement from active loading. 

Supplementary Table 3: Specifications of 
current system and proposed ‘Fast’ system. 

Supplementary Figure 8: Throughput improvement at different concentrations  



Supplementary Note 4:  Throughput modeling with desired minimum particle spacing 

 

Supplementary Figure 9: Throughput of the current system at different concentrations 
 

The throughput achievable by passively loading cells into a sSMR chip is Poisson limited. The average 
throughput (𝐹IJ**KLM) is equal to the concentration (C) of cells in the sample multiplied by the volumetric flow 
rate (𝑄N) through the chip, where 𝑉 is the total chip volume and 𝑇 is the total time required for a cell to travel 
through the entire chip: 

 𝐹𝑃𝑎𝑠𝑠𝑖𝑣𝑒 = 𝐶𝑄𝑉 = 𝐶 N
T
 (9) 

As previously shown by Cermak et al.9, the precision of mass accumulation rate measurements made by a 
sSMR array is inversely proportional to 𝑇. Therefore, to achieve a biologically relevant measurement precision, 
we keep the volumetric flow rate through the sSMR chip constant such that, on average, cells travel through the 
chip in ~15 minutes. A constant volumetric flow rate (𝑄N) in (9) results in a concentration-limited throughput. 
Our sSMR devices for mammalian cells have a volume of 0.283 µL, resulting in a volumetric flow rate of 
approximately 1.132 µL/h. For this case, Equation (9) simplifies to: 

 𝐹𝑃𝑎𝑠𝑠𝑖𝑣𝑒 = 1.132		µL/h		 × 	𝐶 (10) 

which is plotted with a blue line in the plot above. 

Equation (10) represents an idealized case where all of the cells flow at an identical velocity in the 
measurement channel. Since measuring MAR of a cell requires a set of mass measurements performed by 
different sensors in the sSMR chip to be assigned to the same cell, variations of cell order in the measurement 
channel could create discrepancies during this matching process 9. Cells or particles in the measurement channel 
have varied velocities that depend on their size and position in the channel. Interaction of cells with channel walls 
exacerbates this problem by slowing certain cells in the stream. Furthermore, doublet formation in the 
measurement channel, or from simultaneously loading collisions in high concentration samples, results in 
clogging. To address these limitations, we empirically determined a minimum time gap of 15 seconds between 
events to prevent most collisions and changes in cell order. The average time difference between each cell loading 
event, 𝑡∆\  can be calculated by: 



 𝑡∆\ 		=
]

𝐹𝑃𝑎𝑠𝑠𝑖𝑣𝑒
 (11) 

A Poisson probability distribution for time between each loading event can be calculated using Equation (11), 
which is used to find the fraction of events with a greater-than 15 second spacing for any given concentration.  

 𝑃(𝑡 ≥ 15𝑠) = 1 − Mabcd

e!
= 1 − 9Mag∆hhhh:9&∆hhh		g:

&!
 (12)  

The effective rate of particles (𝐹Mii) is defined as the rate of particles with a time gap of at least 15 seconds 
between the leading and trailing particle. 𝐹Mii is thus calculated as the rate of particles entering the array 
multiplied by the probability of a time gap greater than 15 seconds squared (green dashed line in plot above):  

 𝐹𝑒𝑓𝑓 = (𝐶	 × 	1.132	µL/h)	×	𝑃(𝑡 ≥ 15𝑠)2 (13)  

The maximum theoretical active loading throughput would be achieved with instantaneous detection and 
loading from the sampling channel. The maximum throughput would then be divided into a ‘seek’ limited fraction 
and a ‘queue’ limited fraction.  The seek limited throughput limit can be calculated by using Equation (9) and 
substituting the seeking volumetric rate for the device volumetric rate. (plotted as the black line in the plot above): 

 𝐹𝑎𝑐𝑡𝑖𝑣𝑒 = 54	µL/h		 × 	𝐶 (14) 

To calculate this ‘queue’ limited portion of active loading, we assumed a time delay of 15 seconds that 
minimizes matching failure, as previously described. The throughput in this case is simply calculated by assuming 
a uniform loading every 15 seconds (dotted red line in plot above): 

 𝐹𝑎𝑐𝑡𝑖𝑣𝑒 =
1

&klm
= ]

]n
cells/s = 240	cells/h (15)  

The theoretical throughput curve presented in Fig. 2c is constructed by taking the minimum throughput of 
either the ‘seek’ or ‘queue’ limited conditions for a particular concentration. As seen in Fig. 2, the experimental 
throughput of the sSMR achieved with active loading does not match this theoretical maximum, particularly for 
low-concentration samples. This discrepancy is due to the practical throughout limitations imposed by the 
system’s optical and pneumatic components described in Supplementary Note 3.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Note 5: Accuracy of the real-time cell classification used for active loading 

Here we evaluate the accuracy of active loading for correctly allowing cells into the measurement channel 
based on user-specified criteria of the brightfield images that are acquired as cells transition from the sampling 
channel into the measurement channel. Each image was analyzed in real-time by Labview code in order to assess 
whether or not the particle should be allowed into the measurement channel (accepted) or removed via the 
sampling channel (rejected). After the experiment, each image was evaluated manually to determine if the real-
time decision based on the automated image analysis was correct. User-specified criteria were designed to reject 
particles that were classified as ‘Doublet’, ‘Multiple Singlets’, or ‘Debris’. When combining all six samples 
together, the accuracy for correctly allowing particles into the measurement channel was 86% (2040 particles 
were allowed by the real-time code, 1757 of them were manually classified as single cells) and 55% for correctly 
rejecting particles (4159 particles rejected by the real-time code, 2295 of them were manually classified as 
rejection events). The accuracy for each sample is shown in the figure above where we plot the percentage of 
real-time classifications that are in agreement with the manual validation.  

For this application, user-specified settings are typically weighted to avoid rejection criteria. 
Consequently, this approach tolerates higher rates of single-cell rejection, despite the fact these events should 
have been accepted. Rejection of single cells is not particularly detrimental to throughput because the seeking 
code is capable of quickly finding a second event to load into the array, and lowers the probability that debris or 
clumps of cells may interfere with flow in the measurement channel. Furthermore, the rejected events are 
recovered in the downstream collection tube, and for situations were sample is limited, the tube could be reloaded 
back into the system. In some cases, vibration of the instrument from nearby disturbances triggered the acquisition 

Supplementary Figure 10: Real-time particle classification accuracy 



of an image that did not contain a particle. These events, which were not detrimental to the experiment, were not 
included in our accuracy assessment. 

  



Supplementary Note 6: Cost of goods for active loading 

Item 
Number 

Short name Catalog name Cat # Seller Quantity 
needed 

Price per unit Total price 

*1 Regulator Electronic Pressure regulators QPV1TFEE030CXL Proportion Air 3 $535.00   $        1,605.00  

*2 Regulator cord Proportionair powercord 10' QBT-C-10 Proportion Air 3 $35.50   $             106.50  

*3 Camera Monochrome USB 3 Camera BFS-U3-13Y3M-C FLIR 1 $395.00   $             395.00  

*4 Camera Cord USB 3.1 Type-A to Micro-B 
(Locking) Cable ACC-01-2300 FLIR 1 $10.00   $                10.00  

5 PEEK .005" ID PEEK tubing (5 ft) 1576 IDEX H&S 1 $49.38   $                49.38  

6 Tygon 
Clear tubing OD 1/8" ID 1/16" 

(50ft) C210A-0102 Grainger 1 $38.00   $                38.00  

7 1/4" OD 
Pneumatic tubing 

Flame-Retardant Polyethylene 
Opaque Tubing for Air 

5156K87 McMaster Carr 25 $0.36   $                   9.00  

8 Manual regulator 0-60psi Manual Regulator PRG101-60 Omega 1 $300.00   $             300.00  

9 DAQ 
±10 V, Analog Output, 100 kS/s, 4 

Ch Module 
779012-01 (NI-

9263) 
National 

Instruments 1 $416.00   $             416.00  

10 DAQ Chassis C Series USB Single Module Carrier 781425-01 (NI-USB 
9171) 

National 
Instruments 1 $287.00   $             287.00  

11 Wheaton Vials 
Wheaton sample vials - white top 

20mL (case of 72) 80076-578 VWR 1 $112.00   $             112.00  

12 Regulator power 
supply 

24 V 24W AC/DC Wall mount 
adapter 

62-1246-ND DigiKey 1 $20.00   $                20.00  

13 
1/8" NPT to 1/4" 

OD Push to 
connect 

1/8" NPT to 1/4" OD Push to 
connect adapters 5779K102 McMaster Carr 6 $2.96   $                17.76  

14 Microscope Meiji VM-2V Vertical Mount VM-2v w/ FL20 Meiji 1 $1,477.00   $        1,477.00  

15 Microscope Stand 
Meiji Stand Pole type stand /w 

coarse & fine adjustment VM-PC-Stand Meiji 1 $660.00   $             660.00  

16 Objective S. Plan Objective, 10x MA337 Meiji 1 $150.00   $             150.00  

17 Light source Mounted LED and driver LEDD1B, MNWHL4 Thorlabs 1 $449.00   $             449.00  

18 
Illumination 

adapter Lasercut acryllic mounting adapter Custom Custom 1 $50.00   $                50.00  

                

            Total cost:  $        6,101.64  

 

Supplementary Table 5: The cost of goods sheet for constructing a system from scratch that is capable of 
performing the active loading tasks in a simple microfluidic H channel. The starred items (*) represent items 
required to upgrade an existing sSMR system to be compatible with the active loading method. The system 
requires the additional purchase of one each of these items for a total upgrade cost of $975.50. 

  



Supplementary Note 7: Primary sample handling 
 

The six primary samples underwent the same protocol with regards to disassociation, recovery, and 
drugging however the exact timeline of each tissue varied slightly based on the amount of tissue and drug used. 
After at least [culture time] in culture (with the exception of CNS lymphoma which was cultured for 24 hours), 
persistent red blood cells were removed with RBC lysis buffer (00-433-57, Thermo Fisher Scientific).  The 
remaining cells were then dissociated with Accutase (A6964, Sigma-Aldrich) and further purified via 
demyelination (130-096-733, Miltenyi Biotec) with MS separation columns (130-042-201, Miltenyi Biotec), or 
debris removal (130-109-398, Miltenyi Biotec). The purified cells were plated in 6 or 24 well plates and allowed 
to recover in the well plate for [recovery time] before addition of the drug. After [drug duration] days, the samples 
were prepared for sSMR for drug response measurements by dissociation into a single-cell suspension using 
Accutase and gentle pipetting.  Cells were resuspended at a concentration of 100,000 cells/mL in Neurocult NS-
A (as prepared above) with the same concentration of drug or DMSO as their respective culture. 

 

 

Culture Timeline 
Tissue Type [culture time] 

(days) 
[recovery time] 

(days) 
[drug duration] 

(days) Vehicle Drug 1 Drug 2 

Normal brain 2 2 3 DMSO 250 µM 
TMZ 

 

Glioblastoma 5 5 8 DMSO 250 µM 
TMZ 

 

Recurrent 
Glioblastoma 2 4 3 DMSO 1 µM 

Abema 
 

Breast Met 3 4 3 DMSO 1 nM 
RAD 

100 nM 
Abema 

Lung Met 3 5 3 Water 100 µM 
Carbo 

 

CNS Lymphoma 1 1 2 DMSO 10 nM 
Ibrutinib 

 

Supplementary Table 6: Culture timeline for primary samples 

 
Sample Viability 

Tissue Type Vehicle Viability 
(Live/Dead) 

Drug 1 Viability 
(Live/Dead) 

Drug 2 Viability 
(Live/Dead) 

Normal brain 35% 30%  

Glioblastoma 73% 69%  

Recurrent Glioblastoma 67% 59%  

Breast Met 35% 32% 35% 
Lung Met 80% 74%  

CNS Lymphoma 74% 65%  

Supplementary Table 7: Primary sample viabilities 
 

 
  



Supplementary Note 8: Primary sample biomarkers and pathology 
 

Primary Tissue Type Drug Assessed Notes 

Normal Brain Temozolomide Normal brain was used as a negative control for drug response as well as 
baseline mass accumulation, due to its lack in vitro cell replication. 

Glioblastoma Temozolomide Temozolomide is part of the standard of care treatment for glioblastoma14.  
Molecular analysis on this sample showed unmethylated MGMT status, a 
biomarker associated with resistance to temozolomide. 

Recurrent Glioblastoma Abemaciclib 
Abemaciclib is currently being tested in clinical trials of newly-diagnosed and 
recurrent glioblastoma15. In tumor cells, RB1 mutation/deletion is a known 
resistance mechanism to abemaciclib.  
Biomarker analyses did not show RB1 alteration in this tumor sample. 

Breast adenocarcinoma 

metastasis 

Abemaciclib 

Abemaciclib is a US Food and Drug Administration (FDA)-approved therapy 
for the treatment of hormone receptor (HR)-positive, human epidermal 
growth factor receptor 2 (HER2)-negative advanced or metastatic breast 
cancer16.  
Pathological analysis of this sample showed HR-positive and HER2-negative 
statuses. 

RAD001 RAD001 (everolimus) is another FDA-approved therapy for the treatment of 
hormone receptor (HR)-positive, human epidermal growth factor receptor 2 
(HER2)-negative advanced or metastatic breast cancer16. 

Non–small cell lung 

cancer (NSCLC) 

metastasis 

Carboplatin 
Carboplatin is part of the standard of care for the treatment of metastatic 
NSCLC without activating EGFR, ROS1, ALK or BRAF mutation17.  
Histomolecular analyses of this sample showed absence of EGFR, ROS1, 
ALK or BRAF mutation. 

Primary CNS 

Lymphoma 
Ibrutinib Ibrutinib is an FDA-approved therapy for the treatment of several subtypes of 

lymphoma, and is currently evaluated in primary CNS lymphoma within 
clinical trials18. 

 
Supplementary Table 8: Primary sample therapy information 

  



Supplementary Note 9: BT1417 - Normal brain information 

Supplementary Table 9: BT1417 biophysical measurement significance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Buoyant Mass MAR MAR per Mass 
DMSO-TMZ p-value 0.713 0.849 0.837 

Supplementary Figure 11: Biophysical measurements of BT1417 

Supplementary Figure 12: Representative images of accepted/rejected cells 



Supplementary Note 10: BT1410 – Glioblastoma information 
 

 Buoyant Mass MAR MAR per Mass 
DMSO-TMZ p-value 0.0517 0.937 0.545 

Supplementary Table 10: BT1410 biophysical measurement significance  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 13: Biophysical measurements of BT1410 

Supplementary Figure 14: Representative images of accepted/rejected cells 



Supplementary Note 11: BT1233 – Recurrent glioblastoma information 
 

 Buoyant Mass MAR MAR per Mass 

DMSO-Abemaciclib 
p-value 

0.164 0.0298 0.032 

Supplementary Table 11: BT1233 biophysical measurement significance  
 
 
 
  

Supplementary Figure 15: Biophysical measurements of BT1233 

Supplementary Figure 16: Representative images of accepted/rejected cells 



Supplementary Note 12: BT1419 – Breast metastasis information 
 

 Buoyant Mass MAR MAR per Mass 
DMSO-RAD001 

p-value 
0.264 0.966 0.916 

DMSO-Abemaciclib 
p-value 

0.744 0.0240 0.0290 

 Supplementary Table 12: BT1419 biophysical measurement significance 
 

 
 
 
 
 
  

Supplementary Figure 17: Biophysical measurements of BT1419 

Supplementary Figure 18: Representative images of accepted/rejected cells  



Supplementary Note 13: BT1443 – Lung metastasis information 
 

 Buoyant Mass MAR MAR per Mass 
DMSO-Carboplatin 

p-value 
0.998 0.0931 0.0251 

 Supplementary Table 13: BT1443 biophysical measurement significance 
 
 
 

  

Supplementary Figure 19: Biophysical measurements of BT1443 

Supplementary Figure 20: Representative images of accepted/rejected cells 



Supplementary Note 14: BT1448 – CNS lymphoma information 
 

 Buoyant Mass MAR MAR per Mass 
DMSO-Ibrutinib 

p-value 
0.600 0.184 0.203 

Supplementary Table 14: BT1448 biophysical measurement significance  
 

 
 
 

  

Supplementary Figure 21: Biophysical measurements of BT1448 

Supplementary Figure 22: Representative images of accepted/rejected cells 
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