
 
 

 

Supplementary Figure 1 

Schematic of the control system for the serial microfluidic mass sensor array. 

(A) Schematic of optical and electronic path of parallel feedback loops for each mass sensor. (B) Photograph of the optical setup 

implementing the schematic in (A). The photograph shows the sample holder and the fluidic connections to the sensor chip.  
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Supplementary Figure 2 

Transfer functions of the PLL–cantilever control loops. 

Measured transfer functions (colored lines) of all twelve PLL-cantilever feedback loops on a single large-channel serial SMR device. 
Bandwidth had been set to 100 Hz according to the method in [1]. Solid black line shows ideal 100 Hz first-order response, dashed grey 
line indicates -3 dB bandwidth. 
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Supplementary Figure 3 

Sensitivities of the mass sensors in a large-channel device. 

Resonant frequency versus mass sensitivity for a single large-channel device, measured daily during the mouse CD8 cell experiments 
(Figure 3 in the main text). Dashed grey line shows best fit of data to y = ax

1.5
, illustrating how sensitivity scales with frequency to the 

power of 1.5. While fabrication tolerances and slight variations in geometry may explain some of the deviations from the model, it 
remains unclear why some cantilevers exhibit substantial day-to-day variation. 
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Supplementary Figure 4 

Example contour plots of the cost function used in the matching algorithm. 

Contour plots of the cost function for several simulated example cells with varying numbers of previous peaks observed (black points). 
(A) If a cell only has a single peak assigned, the cost function is shaped like a wide bowl, shaped almost entirely by the prior 
assumptions on mass accumulation rate and system noise. (B), (C) As more data points are observed, the mass accumulation rate 
becomes established and the cost function contours become determined by the system’s mass measurement noise. 

Nature Biotechnology: doi:10.1038/nbt.3666



 
 

 
 

Supplementary Figure 5 

Simulation of the cell-matching process. 

Simulation of the cell matching process showing that single cells are reliably matched by our method. (A) We simulate a set of cells 
sampled from a joint distribution of mass and mass accumulation rate similar to the L1210 cells shown in Figure 2. However, we 
simulate cells entering the serial SMR array at a rate of 100 cells per hour (two-fold more concentrated than we have used in our 
experiments). Each cell varies in the time it takes to travel from each cantilever to the next (mean 1.9 minutes, standard deviation 0.3 
minutes), and Gaussian noise is added to each buoyant mass measurement (standard deviation 0.05 pg, similar to that of our large-
channel device). (B) We then match the measurements in the simulated data. All data points that have been matched together as 
corresponding to the same cell have been colored the same randomly-chosen color. (C) Comparison of the masses and mass 
accumulation rates from which the data in (A) was generated, and the observed mass and mass accumulation rates, showing excellent 
agreement. (D) Comparison of mass accumulation rates from which the data in (A) was generated, and the observed mass 
accumulation rates, showing excellent agreement, except for in the case of two mismatched cells (off-diagonal points) out of 300 in the 
simulated dataset. 
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Supplementary Figure 6 

Stability of the cantilevers used in the mass sensor arrays. 

Measured Allan deviations of all cantilevers on two separate devices. Left two plots show Allan deviations in fractional frequency units, 
relative to the unloaded cantilever frequency (colored dots/lines). For reference, the dashed grey line indicates the measured noise 
performance of an optimized piezoresistive single large-channel SMR. Right two plots show Allan deviations rescaled by each 
cantilever’s mass sensitivity. Theoretical thermomechanical limitations on the lowest achievable Allan deviations are also plotted 
(calculated from [2]), assuming the cantilever is driven to a mean-squared displacement one billion times (90 dB) above the thermally-
driven mean-squared displacement. While larger drive amplitudes would theoretically further reduce these limits, mechanical 
nonlinearity typically becomes significant beyond 90 dB, limiting noise performance. 
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Supplementary Figure 7 

Mass accumulation rate resolution of the large-channel devices. 

Measuring a mixture of plastic microparticles to determine mass accumulation rate resolution on a large-channel serial mass sensor 

array. (A) We measured a mixture of 4, 6, 7, 8, 9, 10 and 12 m polystyrene beads (Duke Standards, NIST traceable, Thermo 
Scientific) at 37 C in 0.01% Tween-20 in water. Sensors were calibrated by linearly rescaling their raw frequency signals such that the 

7 m bead modal mass is the expected buoyant mass (10.15 pg). (B) Across all sizes and sensors, particle buoyant masses match the 

expected buoyant masses (dashed lines), verifying that the sensors are linear over this size range. (C) 4 m particles have the lowest 
size variability (in pg) of these beads according to manufacturer’s datasheet, and therefore their distribution’s width is a reasonable 
upper bound on the sensor error. Typical sensor root-mean-square-error is on the order of 0.05 pg. (D) Histogram of mass 
accumulation rates (errors, as particles are not growing) of 85 single particles for which at least 10 sensors could be linked together. 
Mass accumulation rates were calculated excluding data from the first sensor, which displayed much higher noise than the other 

sensors. Dashed line shows estimated mass accumulation rate distribution assuming t = 1.4 minutes, k = 11, and = 0.05 pg, showing 
good agreement between this approximation for mass accumulation rate error and the observed mass accumulation rate error 
distribution. 
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Supplementary Figure 8 

Mass accumulation rate resolution of the small-channel devices. 

Same as Supplementary Figure 7, but for a small-channel serial SMR array. (A) We measured a mixture of 1.0, 1.36, 1.57, 1.74, 2.0, 

and 2.5 m polystyrene beads (Duke Standards, Thermo Scientific, except for 1.0 m, from Bangs Labs) at 37 C in LB with 0.1% 

Tween-80. Sensors were calibrated by linearly rescaling their raw frequency signals such that the 1.0 m bead modal buoyant mass is 
0.02 pg (the expected buoyant mass in LB at a density of 1.013 g/mL). (B) Distributions of measured buoyant masses for each SMR in 

the array, demonstrating both linearity and precision in each cantilever mass measurement. (C) Buoyant mass distributions of 1 m 
polystyrene particles provide an upper bound on each cantilever’s buoyant mass measurement error, here on the order of 0.5-1 fg. (D) 
Mass accumulation rate distribution of single 362 single particles, yielding a mass accumulation rate standard error of 0.022 pg/h. 

Dashed line shows mass accumulation rate distribution based on equation 2 assuming t = 24 seconds, k = 10, and = 0.001 pg. 
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Supplementary Figure 9 

Mass accumulation rate of a fixed mouse lymphoblast cell line (L1210). 

(A) Buoyant mass trajectories for fixed L1210 cells, measured in phosphate-buffered saline at 37 C. (B) By plotting mass accumulation 
rate against time, the first cells going through the array can be seen to be losing mass. We believe this is real mass loss attributable to 
the temperature shift (cells had been fixed and stored at 4 C), and note that after one hour into the measurement cells appear to have 
equilibrated and no further mass loss occurs. (C) Histogram of mass accumulation rates of fixed cells, excluding the first hour of 
measurements. 
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Supplementary Figure 10 

FACS plots of primary acute myeloid leukemia cells. 

FACS plots of two primary AML samples whose growth properties were assessed on the SMR. Fresh primary peripheral blood or bone 
marrow samples from patients with newly diagnosed AML were subject to erythrocyte lysis and stained with antibodies targeting human 
CD33 and human CD15, and leukemia cells were enriched by performing FACS for hCD33/hCD15 double-positive cells. Left panel 
(sample 1): primary peripheral blood sample from a patient with AML with monocytic differentiation and extensive circulating disease. 
Contemporaneous clinical testing confirmed that this leukemia expressed CD33 and CD15 and demonstrated that it comprised 43% of 
peripheral blood mononuclear cells, on which this sample was gated. Of note, this specimen was obtained after the patient had 
received cytoreductive chemotherapy (hydroxyurea) for three days. Right panel (sample 2): primary bone marrow aspirate from a 
patient with therapy-related AML. Of note, this specimen did not undergo immunophenotyping by the clinical lab, but morphologic 
analysis suggested that the leukemia comprised a minority of cells in this double-positive population. 
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Supplementary Figure 11 

Culturing AML cells ex vivo. 

We seeded cells obtained from Patient 1 (Figure 4 and Supplementary Figure 10) at 0.5, 0.7 and 1.5 million cells/mL (blue, red, and 
black, respectively) into 6-well culture dishes. (A) We profiled these cultures volume distributions over the next 48 hours with a coulter 

counter (Beckman Coulter Multisizer 4, 100 m aperture). The cultures behaved similarly for different inoculation densities. (B) Total 
cell counts generally increased slightly, but total biovolume decreased. 
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Supplementary Figure 12 

Mass accumulation rate of E. faecalis measured on a small-channel mass sensor array. 

At the left, colored dots show points which were determined to correspond to a single cell, for which the mass accumulation rate was 
determined and plotted against the cell’s mass (right). Grey points indicate measurements for which less than seven mass 
measurements could be linked together, and were not used in the analysis at right. E. faecalis was grown in Brain-Heart Infusion (BHI, 
Difco) overnight and transferred to fresh BHI with 0.2% Tween-80 at a 105-fold dilution approximately three hours prior to 

measurement. 1.36 m beads were used as the calibration standard and have been omitted from the plot at left for clarity. 
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Supplementary Figure 13 

Comparison of precision between recent quantitative-phase microscopy measurements and SMR measurements. 

Plots in (A) and (B) are excerpted from Mir et al. [3]. Insets in the original figure (A) and caption segment describing the insets have 
been omitted for clarity. Original caption reads: 

SLIM measurements of E. coli growth. (A) Dry mass vs. time for a cell family. [...] The blue line is a fixed cell measurement, 
with SD of 19.6 fg. Markers indicate raw data, and solid lines indicate averaged data. (B) Growth rate vs. mass of 20 cells 
measured in the same manner. Faint circles indicate single data points from individual cell growth curves, dark squares 
show the average, and the dashed line is a linear fit through the averaged data; the slope of this line, 0.011 min 1, is a 
measure of the average growth constant for this population. The linear relationship between the growth rate and mass 
indicates that, on average, E. coli cells exhibit exponential growth behavior. 

(C) Single-cell E. coli (ATCC 43893) growth trajectories measured on a single SMR (160 m long with a 3 by 5 m interior channel, 
operated in the second vibrational mode at 1.1 MHz) of similar design to the SMRs in serial SMR arrays. Growth was measured by 
passing a single cell back and forth through the SMR, as in [4]. Data points from other cells that entered the sensor during the dynamic 
trap (but were ignored by the trapping algorithm) were removed. SMR measurements were made in LB at room temperature, yielding a 
similar growth rate as in Mir et al. [3], which used E. coli MG1655 in M9-casamino acid media at 37 C. (D) Colored points are buoyant 
mass accumulation rates estimated from the data in (C), based on linear fits to non-overlapping 5-minute segments. Five minutes was 
chosen as that was the width of the applied smoothing filter in (A) and (B). Black points are mass accumulation rates from E. coli cells 
at 37 C measured in the serial SMR array in Figure 6A. Dashed lines show best linear fits in which the intercept was forced to zero, and 
corresponding exponential growth rates are noted for the two experiments. Note that the terminology of ’growth rate’ used in (B) is 
equivalent to ’mass accumulation rate’. 
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Supplementary Figure 14 

Theoretical trade-off between throughput and resolution. 

Theoretical trade-off between throughput and resolution for the large-channel devices used in this study, with 12 mass sensors and 
delay channels with volumes 120-fold higher than the volume of a single cantilever. We assume the cell concentration cannot exceed 
one cell per 50 sensor volumes (to avoid two cells being in the sensor at the same time), yielding the line of possible operating points. 
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Supplementary Figure 15 

Effect of signal clipping in power spectral density around the sensor resonant frequencies. 

Saturation applied to a channel carrying many sinusoids adds many other spectral components that are not easily filtered out (noise). 
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Primary Sample 1 Primary Sample 2

Patient Characteristics

Tumor Characteristics

Age

Gender

82

Male

62

Female

Diagnosis

Diagnostic tissue

Involvement by Leukemia (%)

Immunophenotype

 Positive

Negative

Karyotype

Molecular abnormalities

Prior AML therapy

AML with monocytic differentiation

Peripheral blood

43

CD45 (dim), HLA-DR, CD56 (subset), 
CD13, CD33, CD15, CD14 (variable), 
CD11b (subset), CD64

CD34, CD117

Normal (46,XY)

FLT3, NPM1, TET2 mutations

Hydroxyurea x 3 days

AML (therapy-related)

Bone marrow

6

N/A

N/A

46,XX, t(1;16)(p32;p13.1), 
t(8;21)(q22;q22)

None detected

None

Supplementary Table 1
Clinical characteristics of primary AML samples studied with a serial SMR array.
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Note 1: Resolution of mass accumulation rate sensor

How precisely can we measure the mass accumulation rate of a cell? To measure the mass accumulation
rate, we will measure the cell size k times, once every� t minutes, and fit a model to explain how it varies
over time. Here we will assume the total duration of the measurements (k�t) is short enough that a line is
an appropriate model. So the problem becomes, how precisely can we know the slope of a line?

Fortunately, least-squares slope estimates can be written as a linear combination of the observed size
values, Y , as follows [5]:


intercept
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�
= (XT
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T
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Here X is a k ⇥ 2 matrix, where the first column is filled with ones, and the second column corresponds
to the evenly-spaced times at which the cell size is measured. For simplicity, we assume the times are
mean-centered, yielding the following time vector:
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Since the slope estimate is a linear combination of observed size values Y = [y
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T , errors also

propagate linearly. If all the size measurements have independent and identically distributed errors with
mean zero and root-mean-square-error (RMSE) �✏, then the slope RMSE is �✏ times the magnitude of the
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It is worth note that we could parameterize this instead in terms of total time transiting the array,
T = k�t, with k measurements occurring at evenly-spaced increments throughout this interval.
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In this form, it is clearly seen that the standard error scales inversely proportional to the total measurement
duration, with a

p
k dependence on the number of measurements made during that interval (in direct analogy

to the central limit theorem).
We can use equation (2) generally to estimate the resolution of any sytem measuring rates of mass or

volume increase, but specifically in the case of a serial SMR array, it also provides a convenient way to
express the e↵ect of the flow rate, which controls the trade-o↵ between mass accumulation rate resolution
and throughput. As we increase the flow rate, we decrease� t proportionally, which decreases the mass
accumulation rate resolution. Simultaneously, the throughput goes up directly proportionally to flow rate.
An added e↵ect is that faster flow rates yield largermass error, �✏, as the cell spends a smaller amount of time
in the cantilever and therefore cannot filter out as much frequency noise. For white-noise-dominated resonant
frequency measurements (here corresponding to flow rates faster than what we’ve utilized in this paper for
large-channel devices, e.g.� t < 2 minutes), we expect that �✏ will scale roughly inversely proportional to
the square root of� t:

�✏ =
↵p
�t

(3)

Plugging this into (2) suggests that as we increase the flow rate, the mass accumulation rate error is
expected to scale with throughput (1/�t) to the three-halves.
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We have illustrated this resolution-noise trade-o↵ in Supplementary Figure 14. For slower flow, �✏ may
not be dominated by white frequency noise but instead by flicker (pink) or brown noise, and therefore (3)
will sizably underestimate the actual mass noise magnitude.

Note 2: Mass sensitivity scales with frequency

3/2
for varied cantilever lengths

The cantilever resonant frequency f is given by f = 1

2⇡

q
k

meff
, where k is the spring constant and meff is the

e↵ective mass of the cantilever. meff is proportional to the cantilever length l [6], and k is proportional to
1/l3 [7], therefore f / 1

l2 .

We can similarly determine how the cantilever mass sensitivity [8], s depends on length: s / f
m / 1

l3 .

Combining these two facts, we find s will be proportional to f

3/2, when all dimensional parameters other
than the length of the cantilever are kept constant.
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Note 3: Explanation of peak matching algorithm

We attempt to identify all the peaks (up to twelve, one in each cantilever) that we believe originate from
the same cell. To do this, we use a heuristic approach in which we build “cells”, collections of peaks that
we believe belong to the same cell. At each cantilever in turn, starting at the second cantilever, we try to
match the observed peaks at that cantilever with the previously observed cells. To match peaks to their
corresponding cells, we define a cost function, detailed below, representing our assumptions about how cells
both grow and flow through the device. We then try to find a way of pairing the already-observed cells (from
the first n cantilevers) with the peaks observed at cantilever n+1 that minimally violates our expectations.
Additionally, we also include the possibility that a cell is not observed at a particular cantilever, possibly
due to simultaneously entering the cantilever at the same time as another cell, or adhering to the device
walls. We include this possibility by adding fictitious cells (“gaps”) such that a previously-observed cell can
be assigned to a gap if there are no peaks at sensor n that are likely to originate from that cell. Similarly,
a peak in cantilever n+1 can be assigned to a gap if it doesnt appear to clearly appear to correspond to an
existing cell.

Pseudo-code for our matching approach is given below (variables are denoted in blue):

Initialize each peak in sensor 1 as its own cell, put them all in cellList

For each sensor n in 1:(numberOfSensors-1)
peaksToBeAssigned = all peaks in sensor n+1

costs = matrix( number of rows = length(cellList),
number of columns = length(peaksToBeAssigned) )

Pad costs with extra rows and columns for 'unassigned' cells
Set entries of costs for assigning a cell to 'unassigned' to gapCost
Set entries of costs for assigning 'unassigned' to 'unassigned' to 0

For each r in 1:length(cellList)
For each c in 1:length(peaksToBeAssigned)

costs[r,c] = -log( P(peaksToBeAssigned[c] | cellList[r]) )

Find optimal assignment for costs via Hungarian algorithm

Any peaks in peaksToBeAssigned that were assigned to existing cells in the cellList
should be concatenated onto the end of their corresponding cell.

Any entries in peaksToBeAssigned NOT assigned to existing cells are added to the
cellList as cells containing only one peak.

The heart of this approach is how we define a cost function representing our prior assumptions about
device behavior (e.g. cells take approximately two minutes to transit from one cantilever to the next, and
can’t possibly show up at cantilever 2 before appearing at cantilever 1) and cell behavior (over such a short
time period, cell mass usually changes roughly linearly, and the rate of change is unlikely to be extremely
large). To represent these assumptions, we use a probabilistic model of seeing a peak of a particular mass
and time at sensor n+1, given the previous n peaks we’ve already decided are part of the cell’s trajectory.
Using the negative log of the probability gives us a cost function for which minimizing the cost corresponds
to maximizing the likelihood of the data.

We model the probability of observing a peak of mass mn+1

and at time tn+1

, conditioned on the peak
occurring at sensor n+1 and having observed previous peaks of masses m

1:n at times t
1:n, as follows:
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We then assume tn+1

depends only on tn, and is normally distributed with mean tn + µ

�t and variance
�

2

�t, where µ
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�t are specified by the user a priori. We further posit that mn+1

should be related to
tn+1

and the previous data via the following relation
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While it is straightforward to obtain frequentist estimates of �
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when we have already seen many

datapoints, we cannot estimate these quantities easily with only one or two datapoints. To mitigate this we
use Bayesian estimators, which are shaped by a prior distribution when only one or a few datapoints are
available, and shaped more by the data when more data becomes available. The conjugate prior for �
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is
normal (assuming the mass sensor error parameter �✏ is already known) and is specified by hyper-parameters
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We also assume that since �✏ is known, µ�0 is just the mean mass from the n previous observations, and
�
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✏ /n. Using these parameters, we can then write the cost function as:
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where N(x|µ,� 2) is the normal density function evaluated at x with mean µ and variance �

2. Examples
of this cost function for simulated cells are shown in Supplementary Figure 4, demonstrating how this cost
function narrows as more and more data is observed.

In sum, the cost depends on the new data (mn+1

, tn+1

), the previously observed data (m
1:n, t1:n), and

five user-defined parameters:

parameter description
� sensor RMS error
µ�1

prior expectation for mean mass accumulation rate
�

2

�1
prior expectation for mass accumulation rate variance

µ

�t expected average time between sensors
�

2

�t expected variance in time between sensors

Additionally, there is one more parameter for the cost of a gap, yielding six parameters in total controlling
the matching process.

It is worth note that by simply choosing the best matching between the previously-observed cells and
the newly-observed peaks at every step, we do not properly take into account uncertainty in the matching
process. While we have not undertaken this task here, future work to do so may utilize Murty’s algorithm
[9] to obtain not only the optimal assignment (as provided by the Hungarian algorithm), but a ranked set
of the best assignments (e.g. the top 50 assignments). This would allow one to check which assignments are
tenuous and which are very certain.
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Note 4: Comparison of measurement precision between SMRs and quantitative

phase microscopy (QPM)

Comparisons of SMR and QPMmass measurements cannot be made directly because the two methods exploit
di↵erent physical principles. QPM requires computing an unwrapped phase shift function from image data
to yield optical thickness. Optical thickness is integrated over the area of a cell, and the result is multiplied
by a constant to convert it into dry mass units. The constant is based on an average refractive increment of
mostly globular proteins [10]. On the other hand, SMR measurements are based on the change in resonant
frequency of an oscillating cantilever caused by a cell passing through an embedded microfluidic channel.
The frequency shift is divided by a sensitivity constant (Hz/pg) to obtain buoyant mass. The sensitivity
constant is a device parameter and independent of the properties of the analytes. It is obtained by direct
calibration with particles of known buoyant mass.

Supplementary Figures 13A and 13C show mass measurements of E.coli cells with similar interdivision
times made by QPM (left panel) and SMR (right panel). The left panel shows dry mass versus time for three
E. coli cells measured by Mir et al. using QPM [3]. Buoyant mass versus time for 11 E. coli cells measured
by SMR is shown on the right. Buoyant mass error for these cells is 0.22 fg, based on repeat measurements
of a single inert polystyrene particle similar in size and density to these cells (1.36 µm diameter, 1.05 g/mL).
One way to compare the precision of the two methods is to convert the SMR buoyant mass to dry mass.
This is possible using a method we validated in a previous study [11]. Briefly, we measured the buoyant
mass of E. coli cells in two fluids with di↵erent densities. The first fluid was a standard phosphate-bu↵ered
saline solution. The second fluid was identical to the first, except the water in the formula was replaced by
heavy water (D

2

O). Using the method of Archimedes, we found the density of E. coli biomass (E. coli ’s dry
density) to be 1.45 g/mL. This constant can be used to convert buoyant mass to dry mass, as shown on
the right axis in Supplementary Figure 13C. The conversion produces good agreement between the E. coli
dry mass obtained by the two methods. Converting buoyant mass error to dry mass error yields an error of
0.63 fg, approximately 30 times smaller than values produced by QPM.

Another way to assess the precision of the two methods is to compare the relative uncertainties of both
techniques. Because they are unitless, relative uncertainties can be compared directly. In Mir et al. [3],
measurements of a ⇠1.5 pg cell dry mass have a standard deviation of ⇠0.0196 pg, yielding a relative
uncertainty of 1.3%. SMR measurements of similarly-sized cells with an average buoyant mass around 0.3 pg
have a standard deviation of 0.20 fg, or 0.06% relative uncertainty, about 20 times better precision than
QPM. Both the dry mass conversion and relative uncertainty approaches give similar values.

We also find that serial and single SMR measurements of mass accumulation rates exhibit less varia-
tion than those measured by QPM. Supplementary Figures 13B and 13D compare mass accumulation rate
measurements obtained by QPM and SMR. The left panel (Supplementary Figure 13B) shows dry mass
accumulation rate (referred to as growth rate) vs. dry mass of 20 cells measured in reference [3]. Supple-
mentary Figure 13D shows two analogous datasets produced by the SMR method - one taken with a single
SMR device at low throughput and another taken on a serial SMR array with a higher flow rate.

How does the noise of the single SMR compare to the serial SMR array results shown in Figure 6 and
Supplementary Figure 13? The uncertainty in SMR buoyant mass measurements depends on the flow rate
of cells through the device. By varying the flow rate, the system can be optimized for throughput or
measurement precision. The noise level in the serial SMR array measurements (Figure 6) is about 3 times
higher than the single SMR in Supplementary Figure 13C because of the faster flow rate. This could be
reduced at the expense of lower throughput.
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