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S1. MEASUREMENT SETUP

The suspended microchannel resonator (SMR) used in this study is a micro-cantilever with an integrated and
embedded U-shaped microfluidtic channel; see Figures 1b and c. In contrast to conventional resonant mass sensors
that are immersed in liquid, the SMR encapsulates the liquid environment inside the cantilever structure. The
cantilever itself is contained in an on-chip vacuum chamber and vibrates in its resonant modes. This dramatically
reduces viscous losses that would otherwise dominate the noise in mass measurements, thereby leading to extreme
precision in frequency measurement. As a nanoparticle passes through the integrated channel, the cantilever’s mass is
transiently altered. This induces a brief, measurable change in the cantilever’s resonant frequencies that is proportional
to the buoyant mass of the particle. The frequency shift of the cantilever’s third flexural mode is depicted in Figure 1c.
Because higher-order eigenmodes of the cantilever each have a unique vibrational deflection function (mode shape),1

the frequency shift signal acquired from each mode is di↵erent; see Figure 1d.
The core measurement technique used in this study relies on simultaneously exciting several higher-order eigenmodes

of the SMR, while a single nanoparticle is flowed back-and-forth through the SMR. The vibration amplitudes are
estimated to lie between 1nm and 40nm. Several checks are performed to ensure the overriding assumption of small
amplitude and linear response is satisfied: (i) The amplitude of vibration is reduced until no cross-talk is observed
between the di↵erent modes. (ii) The quality factors of the modes are measured at this low amplitude excitation
and are independent of amplitude. (iii) The theoretical linear eigenmode shapes precisely match the experimentally
measured mode shapes. (iv) At order amplitude squared, there is a flow at zero frequency and twice the driven
frequency, due to the quadratic nonlinearity in the governing Navier-Stokes equations. These flow-induced frequencies
are distinct from the SMR’s (driven) modal frequencies and cannot contribute.

Slip at the particle surface a↵ects each vibrational mode di↵erently—due to their di↵erent excitation frequencies—
and the e↵ect of slip on these independent modes are measured concurrently.

To simultaneously acquire the frequency shift signals of multiple modes, the cantilever is configured as an oscillator
with each mode having its own feedback loop; see Figure 1c and ref 1. Namely, the tip vibration of the SMR, which
involves a superposition of all oscillated mode shapes, is measured using an optical lever setup. A custom circuit with
adequate signal bandwidth (10 MHz) is utilized to condition, bandpass filter and amplify the signal acquired from a
fast split-photodiode. To maintain linearity in the detected signal and prevent any crosstalk between di↵erent resonant
modes, the gain of the photodetector is systematically reduced; this also prevents any signal saturation or clipping. The
amplified detector signal is fed into a field programmable gate array (FPGA) through an analog-to-digital converter.
The FPGA circuit is programmed to maintain an array of digital phase-locked-loops (PLL). Each PLL is dedicated to
a single resonant mode and placed in closed-loop with the resonator, both to (i) demodulate the frequency variations
of the vibrational mode, and (ii) excite the mode at a constant amplitude, as a particle induces a time-varying change
in the cantilever at its resonant frequency. The theory of how a PLL should be configured to excite and de-modulate
time-varying resonant frequency changes is discussed elsewhere.1 In contrast to previous studies, this capability is
extended up to the 6th flexural mode of an SMR. During measurements, the loop bandwidth for each PLL controlling
a specific mode is set to at least 250 Hz with a sampling rate of 1 kHz. Because each vibrational mode has a di↵erent
frequency, the PLLs operate independently in the FPGA. Similarly, the actuation signals generated by each PLL are
combined by the FPGA and amplified using an RF amplifier driving a piezo-ceramic actuator placed underneath the
SMR chip. Multiple modes of the SMR are simultaneously and independently actuated by the ceramic actuator that
concurrently vibrates at multiple frequencies; this is because each vibrational mode is responsive to signals only at its
own resonant frequency.

To minimize the e↵ects of uncertainty in the particle position and trajectory within the fluidic channel, frequency
shifts of the first six resonant modes of the SMR (due to the passage of a single nanoparticle) are measured simul-
taneously. Fundamental mode 1 is not used in analysis because it does not contain nodes, which limits the ability
to accurately determine particle position (Section S3). As a nanoparticle moves through the SMR, the measured
frequency shift traces out the curves described by eq 2, i.e., the square of the mode shapes; see Figure 1d. This is
used to extract the mass discrepancy parameter, ↵, for each mode, from which the nanoparticle radius and slip length
are directly calculated (Section S3).

The requirement of wide and high channels (much larger than the particle size) and ability to control multiple modes
simultaneously can increase the mass-equivalent noise in measurements relative to previously reported nanoparticle
measurements.2 To circumvent this problem, a microfluidic control method is used that was previously applied to
monitor the buoyant mass of a single cell throughout its cell-cycle.3 Specifically, the same nanoparticle is passed back
and forth through the SMR’s fluidic channel by controlling the fluidic pressures on both sides of the SMR. To enable
this nanoparticle flow-control, long and separate fluidic channels (10 µm-wide and 625 µm-long) are connected to the
SMR; see “Trap channels” in Figure 1b. After each individual particle measurement, the nanoparticle is held in these
long channels for 2 seconds before being passed back into the SMR for the next single measurement.
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Table S1. Dimensions of the SMR device used in this study.

Property Dimension (µm)

SMR length 400

SMR width 19

SMR thickness 4

Channel height 3

Channel width 5

Lid thickness 0.5

Wall width 2

S2. DESIGN OF THE SUSPENDED MICROCHANNNEL RESONATOR

Behavior of the mass discrepancy parameter in the limit of small inertia, i.e., � ⌧ 1 (viscous dominated flow), is
given asymptotically by ↵ = 1 � (

p
2/9) (� � 1)�3/2 + O(�2) whereas in the opposite limit of high frequency, i.e.,

� � 1 (inviscid flow), we have ↵ = 3/(1 + 2�) + O(1/
p
�); see eq 3 and Section S5 for the full derivation. This

establishes that slip has no e↵ect in these limits—slip a↵ects the flow only at intermediate frequency, �. Therefore,
it is important to use multiple vibrational modes of the SMR within this intermediate frequency range—enabling the
optimal interrogation of slip. Moreover, to satisfy the underlying theoretical assumption of an unbounded flow, the
dimensions (width and height) of the integrated fluidic channel must be much larger than the largest target particle
diameter interrogated. To meet these criteria, an SMR with the dimensions and mechanical parameters reported in
Table S1 is designed, fabricated and used. The SMR is fabricated in the Microsystems Technology Laboratories at
MIT, with some steps performed at Innovative Micro Technology, Santa Barbara, CA, utilizing a previously described
method.4 The resonance properties of flexural modes 2 to 6 of the SMR are provided in Table S2. Fundamental
flexural mode 1 (which is not used) has a resonant frequency of 34.796 kHz and quality factor of 20,761.

Table S2. Properties of flexural vibrational modes of the SMR detailed in Table S1.

Mode Unloaded Quality Standard deviation of

number frequency (MHz) factor frequency noise (Hz)

2 0.2180 9,440 0.43

3 0.6094 4,773 0.37

4 1.191 2,823 0.35

5 1.963 2,093 0.61

6 2.921 1,620 1.6

S3. OBSERVED BUOYANT PARTICLE MASS USING EACH SMR MODE

Experimental data for the frequency shift time series (e.g., see Figure 1d) is fit to eq 2 using an arbitrary polynomial
(up to 3rd order) for the particle position, zp, versus time, t, measurement. This fit procedure enables a nonlinear
dependence of zp on t to be accurately described—it is approximately linear. A least-squares method is applied to
each mode and is used to simultaneously determine (i) the required mass ratio, Mobs

p /MSMR, in eq 2, and (ii) the
constants in the above-described (zp vs t) polynomial function.

Calibration of SMR mass. To measure the observed buoyant mass of the particle, Mobs
p , the mass of the SMR,

MSMR, is required. This is determined using NIST-tracable polystyrene particles (ThermoFisher 4016A) of known
mass. These particles have a well characterized radius of 793.5±9(SD) nm and a density of 1,050 kg/m3. A total of
341 particles are measured using the SMR from a random sample of these NIST particles. The resulting measured
radius of each particle is taken as the average of two measurements: the particle travels through each arm of the
SMR’s microfluidic channel as it traverses from one “buried channel” to the other (on the other side of the SMR);
see Figure 1c. The temperature is monitored to be between 22.4 to 23.0�C throughout the calibration procedure.
Because these polystyrene particles are much lighter than the gold particles used in the slip measurements, their
motion relative to the SMR’s solid walls is small. As such the e↵ects of slip are minimal; this is evident from eq 4 in
the limit, � ! 1.

Equations 2–4 with b = 0 (no-slip) are used to analyze the 341 observed mass measurements of the NIST particles,
producing a histogram of the normalized particle mass, Mobs

p /MSMR. The SMR’s mass, MSMR, is then chosen such
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that the mean of this histogram matches the mean of the NIST specified particle mass. This results in an SMR mass
of MSMR = 5.387±0.026⇥ 10�11 kg, where the reported 95% C.I. is the combination of (i) the uncertainty specified
by two standard errors of the measured mean particle radii, and (ii) the uncertainty due to temperature variation.
This value for MSMR is used in all gold nanoparticle measurements that interrogate slip.

To explore sensitivity to the (no-slip) assumption of b = 0 used in these calibration measurements, the same
procedure is applied with b = 10 nm and b = 100 nm where the SMR mass is determined to be 5.386⇥ 10�11 kg and
5.377 ⇥ 10�11 kg, respectively—a change in SMR mass of only 0.02% and 0.2%, respectively, which is smaller than
the reported uncertainty in MSMR above. This shows that the hydrodynamic flow generated by these particles, and
associated boundary condition at the polystyrene-water interface, exert a negligible e↵ect on the measured SMR mass
and can be safely ignored.

Gold nanoparticle measurements. Details of the gold nanoparticles used in measurements are in Section S4. For each
of the five measured SMR modes (modes 2 to 6, see Figure 2b), the observed buoyant mass of each gold nanoparticle is
determined using eq 2. Typical frequency changes due to the presence of a nanoparticle are approximately 1 to 10 Hz
and always greater than the standard deviation of the frequency noise (which enables detection of the required signal).
Equation 3 then gives the value of ↵M true

p , where the true buoyant mass of the particle is M true
p = (4⇡/3)R3(⇢p�⇢f);

⇢p is the known particle density, i.e., density of gold, and ⇢f is the known liquid density, i.e., density of water at the
measured temperature (between 22.4 and 23.4�C for the gold nanoparticle measurements). The mass discrepancy
parameter, ↵, is a function of the unknown particle radius, R, and slip length, b; see eq 4. A nonlinear least-squares
approach is used with eq 4 to extract the two required parameters, R and b, from the (five independently measured)
mass versus frequency data of the same particle (one measured mass for each vibrational mode, i.e., SMR modes 2 to
6). For the present experiments, slip lengths of a few nanometers will alter the measured frequency shift curves by
approximately 0.01–0.1 Hz, relative to the no-slip result. Because these changes in the frequency shifts due to slip are
expected to be much smaller than the standard deviation of the frequency noise (on the order of 1Hz, see Table S2),
each nanoparticle measurement is repeated hundreds of times; see Table S3. Cumulative histograms of the radius and
slip length for an individual nanoparticle are then generated; see Figure 3a for an example of these distributions.

Table S3. Measured radius, slip length and number of measurements on each gold nanoparticle. Reported uncertainty is two
standard errors of the mean.

Radius (nm) Slip length (nm) Number of

measurements

119.8±0.4 2.6±2.4 144

122.8±0.4 4.5±2.7 140

125.2±0.4 3.4±2.2 204

125.6±0.4 3.1±2.1 162

128.5±0.3 2.1±1.6 308

131.4±0.4 2.5±1.8 110

131.9±0.6 3.3±2.7 142

135.3±0.5 3.0±2.2 132

143.4±0.5 0.2±1.7 120

148.3±0.4 3.7±1.6 334

151.5±0.4 3.9±1.8 396

153.2±0.3 4.1±1.4 612

153.5±0.4 1.8±1.7 186

154.9±0.3 1.6±1.3 490

155.7±0.4 3.5±1.6 238

160.5±0.4 3.7±2.1 254

160.8±0.4 1.3±1.3 338

S4. SELECTING APPROPRIATE GOLD NANOPARTICLES

Stabilized suspensions of gold nanoparticles in citrate bu↵er from Sigma-Aldrich (742066, 742074, 742082 and
742090) are used for all slip measurements. These nanoparticles have identical composition and surface chemistry,
but vary in size. The developed theory in Section S5 assumes a rigid, spherical particle of constant density. However,
the true composition of these particles features a citrate layer, of thickness (<1 nm), adsorbed to the particle surface.5

Because these layers are of low density, soft and compliant, they must produce an even smaller negative bias in the
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measured slip length, i.e., they cannot account for the measured positive slip length reported in Figure 4. These
citrate layers do modify the wettability of the gold surface, which a↵ects the slip length; this property is used to
compare the measured slip length to molecular simulations. The nanoparticles are sampled from populations with
mean radii ranging from 100 to 200 nm.

To ensure only a single gold nanoparticle is in the channel at any given time, we use the following procedure. First, a
low particle concentration of 104 to 105 particles per ml is supplied to the SMR channel. Second, we use the frequency
versus time curves acquired from the multimode measurements (e.g., see Figure 1d) to test for the presence of more
than one particle. If two particles are in the SMR simultaneously, a convolution of two di↵erent signals is measured;
this looks drastically di↵erent to a single particle signal; e.g., see Figure 4 of ref 1. Occasional measurements of this
type are discarded.

A total of 22 gold nanoparticles are measured (hundreds of times each, see above) whose radii vary from 67.9 to
205.0 nm. Slip lengths of a subset of these particles are interrogated, for the following reasons. Reducing the particle
size lowers the signal-to-noise ratio, restricting the practical minimum radius that can be measured to 115 nm; see
Figures 4a and 8. Conversely, the derived theory implicitly assumes the particle does not interact hydrodynamically
with the bounding solid walls of the SMR, leading to a practical upper limit on the particle radius of 165 nm (above
which, leads to errors in the measured slip length of greater than 1 nm); see Section S7. The full data set (including
those particles not analysed as discussed above) is given in Figure S4a.

17 individual nanoparticles lie within this particle size range allowed by the measurement setup: radii between 115
and 165 nm. Use of these particles thus permits a robust assessment of the constitutive nature of the Navier slip
condition. An analysis of the various uncertainties is provided next; error bars derived from this analysis are included
in the data reported.

Sources of uncertainty. There are three key sources of uncertainty in the particle measurements: (i) a finite number
of particle measurements leads to inevitable uncertainty in the measured means of the histograms, (ii) the temperature
is measured to vary between 22.4 and 23.4�C (for the gold nanoparticle measurements) which alters the density and
viscosity of the liquid, and (iii) measurement of the cantilever mass has uncertainty detailed in Section S3. All these
uncertainties can be quantified and are independent, so the total uncertainty is the RMS of these values; the reported
uncertainties in Table S3 give two standard errors of the mean.

S5. THEORETICAL MODEL FOR THE MASS DISCREPANCY PARAMETER

Functional dependence of the mass discrepancy parameter, ↵, on the liquid and particle properties, and the excita-
tion frequency, fn, is calculated under the following assumptions: (i) the particle is a solid sphere, (ii) its radius, R, is
much smaller than the SMR length, L, and (iii) the particle oscillation amplitude is small relative to R. In addition,
analytical calculations also assume that the particle is much smaller than the channel height and width, and far from
any of the internal walls, i.e., the flow is unconfined. These assumptions enable linearization of the Navier-Stokes
equations for the liquid surrounding the particle, and solution of the mass discrepancy parameter, ↵, at any local
position, zp, along the SMR.

We consider a spherical particle oscillating with velocity, V e�i!t
ẑ (where V is to be determined), in a uniform

oscillatory flow, Ue�i!t
ẑ, where ! is the angular oscillation frequency, t is time, i is the imaginary unit, ẑ is the

Cartesian unit vector in the direction of the oscillatory flow and the true velocities (as measured) are given by the real
or imaginary part of these expressions. Because the flow exhibits negligible amplitude relative to the particle radius,
R, we use the unsteady Stokes equations,

�i�u = �rp+r2
u, (S1)

in the frequency domain with an explicit time dependence of e�i!t, where the variables in eq S1 have been nondi-
mensionalized as follows: velocity by U , time by 1/!, spatial dimensions by R, and the pressure scale is chosen for
convenience to be µU/R where µ is the shear viscosity of the fluid, � = !R

2
⇢f/µ is the oscillatory Reynolds number

and ⇢f is the fluid density. All variables in this section are henceforth dimensionless.
Using a reference frame where the far field velocity is zero introduces a fictitious force, �(4⇡/3)i�ẑ, on the particle.

The boundary conditions on the particle surface are therefore
h
u
(d) � (V � 1) ẑ

i
· n = 0,

h
u
(d) � (V � 1) ẑ� �n · S

i
· (I� nn) = 0,

(S2)

where n is the unit normal to the particle surface, I is the identity tensor, � ⌘ b/R is the Navier slip length
(nondimensionalized by the particle radius) and S ⌘ 2e = ru + (ru)T where e is the rate-of-strain tensor. Solving
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for the force on the particle gives F = �(4⇡/3)i�ẑ+ F
(d)

ẑ, where

F
(d) = �6⇡ (V � 1)

1 + (1� i)
q

�
2 � i

�
9 + �

✓
2 + (1� i)

p
2� � i�/3� (1+i)�

9

q
�
2

◆

1 + �

✓
3 + (1� i)

q
�
2

◆ . (S3)

Setting � = 0 yields the well known result for (no-slip) Stokes drag on an oscillating sphere. The particle velocity, V ,
is specified by conservation of momentum,

�4⇡

3
i��V = �4⇡

3
i� + F

(d)
, (S4)

where � ⌘ ⇢p/⇢f is the ratio of the particle density to that of the liquid. The change in force on the SMR due to the
presence of the particle is then calculated by subtracting the contribution from the bulk fluid in the absence of the
particle and then integrating the remainder of the surface stress (now due only due to the disturbance flow created by
the particle) over the surface of the SMR’s microfluidic channel. This is achieved by using a bounding surface (whose
shape is arbitrary) that is infinitely far away from the particle. The result of this procedure subsequently gives the
observed buoyant mass of the particle. Dividing this by the true buoyant mass of the particle gives the required result
for the mass discrepancy parameter in eq 4.

We now examine the e↵ect of the liquid-solid particle boundary condition and first consider particles that impose
the no-slip condition. For particles heavier than the surrounding liquid, � > 1, (negative) buoyancy e↵ects cause the
particle to move relative to the liquid. Specifically, while inertia causes the particle to lag behind the solid motion
of the SMR, hydrodynamic drag works to move the particle in concert. Since inertia inevitably wins as frequency
increases, this leads to a reduction in the observed buoyant particle mass relative to its true value, i.e., ↵ decreases
as observed in the solid green and red curves of Figure 2a. This explains the measurements in Figure 3c of ref 1, as
recently reported in ref 6. Particles lighter than the liquid lead to positive buoyancy, and hence an enhancement in
the observed mass, i.e., the mass discrepancy parameter, ↵, exceeds unity (solid blue curve Figure 2a). Yan et al.6

solved this “no-slip” problem numerically using a Lattice Boltzmann method, and the formula in eq 4 provides the
analytical counterpart.

Slip at the solid surface reduces hydrodynamic drag and thus enhances deviation of the mass discrepancy parameter,
↵, from unity. A monotonic increase in the magnitude of this deviation in ↵ with dimensionless slip-length, �, is
observed within the bounds for � reported in Figure 2a. This deviation enables the slip length to be extracted from
SMR measurements of nanoparticle mass.

S6. EFFECT OF PARTICLE NONSPHERICITY ON SLIP LENGTH MEASUREMENTS

Due to their synthesis process, gold nanoparticles are not perfectly spherical—but the measurement protocol is
insensitive to nonsphericity, which we show here. The nanoparticles assume a random orientation in the SMR and
hundreds of measurements are taken on each nanoparticle. Therefore, it is appropriate to study the ensemble average
e↵ect of nonsphericity over all possible particle orientations. In Section S6.1, we prove that this averaging procedure—
inherent in our measurements—extracts the radius of an equivalent volume sphere to O(⇠), where ⇠ is the RMS surface
roughness, defined below.

Numerical simulations of nonspherical particles, using finite element analysis, shows that there exists a bias to
the slip length at O(⇠2). See Section S6.2 for the complete numerical analysis; a general theory for this O(⇠2)
e↵ect will be reported elsewhere. These numerical simulations are used to quantify the influence of nonsphericity on
the measured slip length—nonsphericity of the nanoparticles is characterized using transmission electron microscopy
(TEM). Critically, this produces a negative slip length bias and is one order-of-magnitude smaller than the positive
slip lengths reported here (bias is �0.18±0.03 nm; 95% C.I.); it therefore cannot account for the measurements. Note
that this bias is often termed an “e↵ective slip length” in the literature.7

S6.1. Theoretical model for the e↵ect of nonsphericity

Following the work of ref 8, the nonspherical particle is a superposition of a shape perturbation function, g, and
the surface of a perfect sphere; the O(1) function, g, is dimensionless. The radial coordinate of the particle surface is
therefore,

r = 1 + ⇠g(✓,�), (S5)
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where r has been nondimensionalized by the radius of an equivalent volume sphere, ✓ and � are the usual spherical
polar and azimuthal angles, respectively and ⇠ is the RMS of the di↵erence in the radial coordinates of the particle’s
surface and the surface of an equivalent volume sphere; identical scalings to Section S5 are used for all remaining
variables. The no-slip boundary condition is applied to the particle surface throughout this section, however, the
conclusions hold equally for particles with small slip lengths relative to their radii, by linearity, and are hence directly
applicable to this study. The shape perturbation function, g, is normalized by

1

4⇡

Z

Ŝ
g
2
dS = 1, (S6)

where Ŝ is the surface of the unit sphere; this ensures that ⇠ specifies the RMS surface roughness as discussed above.
We now prove that the observed slip lengths obtained assuming a perfect sphere, i.e., eq 2–4, are una↵ected by

nonsphericity to O(⇠). The force on the nonspherical particle for any fixed orientation is8

F =
h
F0I+ ⇠A

(1)
i
·U, (S7)

where U is the (arbitrary) velocity of the particle and

F0 = �6⇡

 
1 + (1� i)

r
�

2
� i

�

9

!
, (S8)

is the force coe�cient of an equivalent volume sphere. The tensor representing the first order surface perturbation is

A
(1) =

9

4

⇣
1 + (1� i)

p
2� � i�

⌘Z

Ŝ
g nn dS. (S9)

We now prove that tr(A(1)) = 0, where tr denotes the trace of the tensor. Now

tr(A(1)) =
9

4

⇣
1 + (1� i)

p
2� � i�

⌘Z

Ŝ
g tr(nn) dS, (S10)

but tr(nn) = 1 and
R
Ŝ g dS = 0,8 so we immediately have

tr(A(1)) = 0. (S11)

To calculate the mass discrepancy parameter, ↵, at arbitrary fixed particle orientation, the z-component of the
force exerted on the particle when it moves with velocity U = (V � 1)ẑ is required, i.e.,

F · ẑ ⌘ F
(d) = (V � 1)ẑ ·

h
F0I+ ⇠A

(1)
i
· ẑ, (S12)

which gives

F
(d) = (V � 1)

h
F0 + ⇠A(1)

: (zz)
i
, (S13)

where : is the tensor double contraction operator. Note that the fictitious force due to the noninertial reference frame,
as discussed in Section S5, must be included when calculating the mass discrepancy parameter, ↵. The ensemble
average over all orientations then immediately follows from eqs S11 and S13,

D
F

(d)
E
⌘ 1

4⇡

Z

Ŝ
F

(d)
dS = (V � 1)

✓
F0 +

⇠

3
tr(A(1))

◆
= (V � 1)F0. (S14)

This proves that eq 4, which assumes a perfect sphere, recovers the true slip length correct to O(⇠). In so doing, it
establishes that the e↵ect of nonsphericity on the average hydrodynamic force,

⌦
F

(d)
↵
, must occur at higher order,

and is therefore expected to be O(⇠2); see Section S6.2.

S6.2. Bias in the Measured Slip Length due to Particle Nonsphericity

Numerical simulations are performed on prolate spheroids and a regular dodecahedron. (i) Prolate spheroids
are chosen because this geometry defines the lowest-order spherical harmonic for nonsphericity. Their results thus
provide the leading-order e↵ect for an arbitrary particle of small nonsphericity, and hence a good approximation. (ii)
A regular dodecahedron is chosen because it mimics the faceted shape of the particles used in experiments; see Figure
S1. Analysis of this particle validates the expected leading-order behavior of the prolate spheroid. The spherical
theory in eq 4 is fit to these numerical results to estimate the magnitude of the bias in the slip length induced by
nonsphericity. As discussed above, the no-slip boundary condition is used throughout.
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Figure S1. Transmission electron microscope images of Au nanoparticles. The nonspherical parameter, ⇠, and equivalent
radius, aequiv, to be used in eq S15, are estimated from these images.

A. Prolate spheroids

Three prolate spheroids with major-to-minor axes ratios of 1.1, 1.3 and 1.5 (simply referred to as the “aspect
ratio”) and a sphere are studied. The force on each particle due to unitary translation along each principal axis is
calculated at the 5 frequencies used in the experiments; see Table S2. This is achieved via numerical computation
using COMSOL Multiphysics. That is, the counterpart of eq S3 for a nonspherical particle is computed. Due to
linearity of the unsteady Stokes equations, the force in 3 orthogonal directions is su�cient to calculate the force
in any (random) orientation. The numerical value of the mass discrepancy parameter, ↵, is calculated from these
computational results.

Monte-Carlo simulations are then performed as described in Section S8 but, importantly, the prolate spheroidal
particle assumes a random orientation for each run, the results of which are averaged; the order of this averaging
process is irrelevant for small ⇠. These simulations show that for prolate spheroidal particles, SMR measurements
recover the radius of the equivalent volume sphere correct to O(⇠), as expected; see Figure S2. Indeed, the numerical
results suggest that this holds to O(⇠2); see caption of Figure S2. This shows that use of the equivalent volume sphere
surface as the reference surface in the reported slip length measurements is appropriate.

The mean slip length extracted from Monte-Carlo simulations of each prolate spheroid, using the spherical formula
in eq 4, is plotted in Figure S3a. Because the above theory shows there is no bias in the slip length to O(⇠), a
quadratic term in ⇠ is fit to the simulation results; this yields

b
prol
bias = �(0.65± 0.23)⇠2aequiv, (S15)

where bprolbias is the (dimensional) slip length bias and aequiv is the radius of the equivalent volume sphere; a 95% C.I. is
specified. It is noteworthy that the slip length bias, bbias, is always negative and the fit parameter of 0.65 ± 0.23 is
of order one, as expected from dimensional considerations. Since a prolate spheroid defines the lowest-order spherical
harmonic for nonsphericity, as discussed, the result in eq S15 is expected to provide a good approximation for an
arbitrary particle of small nonsphericity.

B. Regular dodecahedron

The above numerical analysis is repeated for a regular dodecahedron, i.e., the force on the particle when vibrating in
each of 3 orthogonal directions is calculated numerically with COMSOL at each of the 5 experimental frequencies. The
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Figure S2. Error in the equivalent spherical radius extracted from numerical simulations of prolate spheroids. The relative
error is RE ⌘ (aequiv � asim)/aequiv, where aequiv is the radius of an equivalent volume sphere and asim is the radius extracted
by fitting numerical simulations to eq 4. Because ⇠ = 0 defines a sphere, RE is due to (i) numerical simulation error, and (ii)
bias due to nonsphericity. Since the radius extracted using the spherical model, eq 4, is correct to O(⇠)—see Section S6.1—it
follows that the extracted radius is expected to vary quadratically with ⇠ (at next order). A quadratic fit with respect to ⇠

gives RE = (0.06± 0.04)⇠2, where the uncertainty specifying two standard errors. This shows there is no bias in the measured
equivalent radius to O(⇠2); the fit coe�cient is small and its error is comparable to its value.

dodecahedron studied has an equivalent volume sphere radius of 150nm. These numerical results are used to calculate
the mass discrepancy parameter from which the above-mentioned Monte-Carlo simulations are used to determine the
bias in the slip length. Due to the theoretical arguments in Section S6.1, we expect this slip bias to be O(⇠2). For the
dodecahedron shape we calculate ⇠ = 0.058 and extract a slip length of �0.44 ± 0.08nm. Dividing by the particle’s
equivalent volume sphere radius, and ⇠

2, i.e., the expected order of the error, gives

b
facet
bias = �(0.86± 0.16)⇠2aequiv. (S16)

The bias is again of the order ⇠
2
aequiv as indicated by the order one constant in eq S16. This result is virtually

identical to eq S15 for a prolate spheroid, highlighting (i) the leading-order nature of the prolate spheroid result,
and (ii) validity of the asymptotic analysis for both smooth and faceted particles (the experimental situation). The
formula for a prolate spheroid is used to estimate the slip length bias in all measurements.

Reference 7 shows that for a no-slip, rough, and flat surface in steady Stokes flow, there is an e↵ective slip length—
defined at the location of the mean roughness height—which is always negative and varies as O(⇠2). The above
negative slip length biases, bprolbias and b

facet
bias , for nonflat (spherical) surfaces in unsteady Stokes flow exhibit the same

sign, magnitude and dependence on ⇠ as ref 7.
TEM images are used to measure the values of ⇠ and aequiv for the nanoparticles studied; see Figure S1. MATLAB

is used to numerically integrate the particle shape contour and thus calculate both the equivalent radius, aequiv, and
nonspherical parameter, ⇠. These values are substituted into eq S15 to estimate the bias, bbias, in the observed slip
length of each particle, the results of which are given in Figure S3b. The mean value of this slip length bias over all
measured particles is hbbiasi = �0.18 ± 0.03 nm (95% C.I.) which is well within the uncertainty of the observed slip
length in the experiments of b = 2.7 ± 0.6 nm (95% C.I.). This bias due to nonsphericity has an insignificant e↵ect
on the final measured slip lengths and their uncertainties in Figure 4.

S7. EFFECT OF THE SMR WALLS ON SLIP LENGTH MEASUREMENTS

The disturbance velocity field created by the particle (when inside the SMR) is inviscid outside the particle’s viscous
boundary layer. In this outer region, it decays as 1/r3 where r is the radial distance from the particle center. For
the present experiments, the viscous boundary layer thickness is between 200 and 800 nm, which is smaller than the
channel width and height. This rapid decay in the disturbance flow minimizes the e↵ect of the SMR walls on the
measurements.

To quantify wall e↵ects on the slip measurements, numerical simulations are performed for finite channel size. A
boundary integral method (described in Section S11) is used. Simulations are performed on no-slip particles to create
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Figure S3. Bias in the slip length measurements due to nonsphericity. (a), Bias in the observed slip length for prolate
spheroidal particles. Note that ⇠ = 0 corresponds to a sphere and hence the evident deviation from zero at this value specifies
the uncertainty in the numerical computations. The solid curve gives the quadratic best fit to the data set (i.e., slip length is
chosen to vary as ⇠

2) and the dashed curves specify its corresponding 95% C.I. The resulting fit equation is given in eq S15.
(b), Corresponding slip length bias, bbias, estimated using eq S15 for each particle in Figure S1; error bars specify a 95% C.I.
based on the error in the numerical computations (from panel a).

sample data of ↵M true
p vs �. The same procedure used for the experiments as described in Section S3 is then used

to extract the radius and slip length from this sample data. If the SMR walls exert no e↵ect, then the extracted slip
length will be zero and the extracted radius will be equal to the specified (true) particle radius. Numerical results
show that these two properties always occur simultaneously allowing for slip length evaluation to be used as a proxy
for wall e↵ects. While these simulations of wall bias use the no-slip boundary condition, they apply equally to particles
with slip by linearity (provided the slip length is much smaller than the particle radius, which is the experimental
situation).

Transit times (which vary between 300 and 800 ms for each half of the SMR) are used to estimate the particle’s
proximity to the SMR walls (fast transit times indicate particle paths close to the center of the microfluidic channel
while slow transit times imply paths closer to the bounding walls). Laminar flow through a pipe of rectangular cross
section is used for this purpose; the e↵ect of the particle on this flow is ignored due to its small size. Because there
is variability in the flow rate through the SMR, calculation of the precise position of the particle within the SMR
is not possible; this error is included in the error bars of Figure S4 (95% C.I.). In general, particles close to the
SMR walls have a large negative bias to the slip length while particles far from any walls do not experience any
bias. Figure S5 gives (sample) results for a 150 nm radius particle in a 3 µm height channel, as a function of particle
position in the channel. This shows that a significant (negative) slip length bias occurs only if the particle is placed
a distance less than 25% of the channel height from the wall. From the measured transit times, we conclude that the
vast majority of particles do not lie close to the internal walls—the remaining particles (close to the walls) exert a
negligible e↵ect on the overall slip measurements. The primary finding of our numerical simulations is that particles
of radius smaller than 160 nm induce a negligibly small bias in slip (due to the walls) while particles of radius close
to 200 nm experience a detectable negative bias in the extracted slip length. Therefore, these larger particles are
excluded from the final analysis; see Figure S4 for the full data set, including these excluded particles. Importatntly,
the experimental nonideality of the boundary walls produces negative slip length biases only, its presence cannot
explain the measured positive slip lengths in Figure 4.

S8. MONTE CARLO SIMULATIONS

The overall performance of the described methodology for measuring the true radius and slip length of a single
particle is assessed here using Monte Carlo simulations. Simulations are performed where synthetic frequency shift
data are generated using eq 2, for a chosen (nominal) particle mass, radius, density ratio and slip length. Gaussian
frequency noise with the same standard deviation found in the measurements of each SMR mode (see the fourth
column in Table S2) is added to this synthetic frequency shift data; this produces simulated data resembling the
curves in Figure 1d. The particle radius and slip length are then recovered from this noisy synthetic data using an
identical procedure to that of the measurements, i.e., a least squares procedure is used with eqs 2–4 to determine R
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Figure S4. Bias in extracted slip length measurements resulting from a wall-bounded flow. (a), Measured slip length and 95%
C.I. for the 22 particles studied. The smallest two particles (radii 67.9 and 85.7 nm) are excluded from the data analysis for
unacceptable signal-to-noise ratio; see Figure S9. (b), Bias in the measured slip length due to finite size e↵ects within the SMR
(vertical bars specify a 95% C.I.). The largest 3 particles (radii 193.9, 195.8 and 205.0 nm) exhibit a significant negative bias in
their measured slip length due to the bounding wall. Numerical simulations are not performed on the 2 smallest particles that
are eliminated for unacceptable signal-to-noise ratio. Identical vertical scales are used in panels a and b to facilitate comparison,
with details of panel b magnified in its inset.
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Figure S5. E↵ect of bounding wall on the extracted slip length. Sample numerical (boundary element) simulations of a 150
nm radius gold nanoparticle with a no-slip boundary condition in a finite sized channel of height 3 µm (identical to the SMR
used). A nondimensional slip length, � ⌘ b/a, where b is the slip length and a is the particle radius, is fitted using the small
particle analytical fornula, eq 4. A fitted slip length of zero indicates that the assumptions underlying eq 4 are satisfied, i.e.,
the particle is hydrodynamically isolated from the channel walls. The nondimensional particle position is � ⌘ z/a, where z is
the distance between the channel’s lower wall and the particle center. Blue stars are the boundary element simulations, red
line is to guide the eye. Numerical uncertainty in the boundary integral calculations are comparable to the starred symbols.

and b from modes 2 to 6 (see Section S3 for a detailed description).
In total, 10,000 simulations are performed using this procedure on a single particle specification, resulting in

histograms for both the extracted particle radius and slip length. Initially, a particle radius and slip length of 125 nm
and 5 nm, respectively, is studied to test the e�cacy of the data fitting procedure. The resulting radius and slip length
histograms for these simulations are provided in Figure 3b. The histogram for the radius appears to be normally
distributed with a mean of 125.03±0.06 nm, i.e., the particle radius of 125 nm is extracted accurately. Additionally,
the variance of this histogram matches the experimental data, demonstrating that frequency noise is the direct cause
of the variance in the experimental particle radius distributions. In contrast, the slip length histogram is right skewed,
as in the experimental data. The variance and the skewness coe�cient match the experimental data, again indicating
the shape of these distributions is a direct consequence of frequency noise. The mean of the slip length distribution
is 6.91±0.24 nm which exceeds the specified slip length of 5 nm; this discrepancy is now discussed.

To explore the di↵erence between the specified and extracted mean slip lengths, as a function of frequency noise,
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we run a set of Monte Carlo simulations where the frequency noise is systematically increased from zero (all other
details are as described above). This is achieved by fixing the relative strengths of the frequency noise standard
deviations across all vibrational modes to the experimental situation, and increasing their magnitudes; Figure 3c
reports the results of these simulations. Because the mass discrepancy parameter, ↵, is proportional to the frequency
shift of each mode, �fn (see eqs 2 and 3), adding noise to the frequency shift curves is equivalent to adding noise
directly to the mass discrepancy parameter, ↵. We therefore report the average standard deviation of the mass
discrepancy parameters over all modes on the horizontal axis in Figure 3c. The mean slip length (extracted from the
slip length distributions) appears to increase quadratically with increasing noise, suggesting the actual slip length can
be determined if the noise level is known.

An asymptotic analysis—in the limit of small frequency noise—is now performed on the least-squares fit procedure
used to determine R and b. That is, the primary (leading-order) e↵ect of skewness in the histograms is considered.
This gives a formula connecting (i) the measured mean slip length and particle radius of each data set and (ii) the
frequency noise of each SMR vibration mode, to the actual slip length and particle radius corresponding to the Navier
slip condition. We provide the full derivation of this procedure (Section S8.1) and then subsequenctly validate its
usage through Monte Carlo simulations (Section S8.2). Importantly, by performing a large number of measurements
on an individual particle, the noise can be well characterized allowing for the recovery of the actual slip length.

S8.1. Asymptotic theory for least-squares fits in the presence of additive noise

This analysis builds on the theory reported in ref 9. Dimensional variables are used predominantly in this section.
The least-squares procedure for the multimode measurements fits a specified number, N , of observed buoyant mass

measurements, M (k)
p , to a known fit function, F (X,�k) = ↵M

true
p , where X ⌘ (R, b), �k is the oscillatory Reynolds

number of mode k, and M
true
p is the true buoyant mass. The required fit is obtained by adjusting the parameters, X,

such that the function,

� =
NX

k=1

h
F (X,�k)�M

(k)
p

i2
, (S17)

is minimized. Here, we theoretically examine the performance of this least squares procedure in the presence of an

additive noise process in the collected data, specifically M
(k)
p = M̂

(k)
p + ✏zk where M̂ (k)

p is the (idealized) measurement
in a noiseless system; ✏zk models the noise process where the constant ✏ ⌧ 1 and {zk} is a set of independent O(1)

random variables. Therefore, the variance of the measurement is Var[M (k)
p ] = ✏

2Var[zk]. Here, ✏2 is chosen to be

the mean of the variances of all measured modes, i.e., ✏2 = E(Var[M (k)
p ]) with E(Var[zk]) = 1. The least squares fit

procedure in eq S17 therefore becomes

� =
NX

k=1

h
F (X,�k)� M̂

(k)
p � ✏zk

i2
. (S18)

Stationary points of the system are specified when the gradient of � with respect to X is zero, i.e., @X� = 0, giving

NX

k=1

⇣
F (X,�k)� M̂

(k)
p � ✏zk

⌘
@XF (X,�k) = 0, (S19)

which specifies a set of simultaneous equations equal to the number of dimensions of X; which is two in the present
problem. We define an asymptotic expansion for X with respect to ✏,

X = X0 + ✏X1 + ✏
2
X2 +O

�
✏
3
�
, (S20)

where X0 is the fit parameter vector in the limit of zero noise, i.e., the (required) true value of the fitting parameters.
A Taylor expansion of the fit function about X0 gives

F (X,�k) = Fk + ✏X1 · @XFk + ✏
2

✓
X2 · @XFk +

1

2
X1 · @2

XFk ·X1

◆
+O

�
✏
3
�
, (S21)

where Fk and its derivatives are the corresponding values of F evaluated at (X0,�k). Taylor expansion in the gradient
about X0 gives

@XF (X,�k) = @XFk + ✏X1 · @2
XFk +O

�
✏
2
�
. (S22)



13

Substituting eqs S21 and S22 into eq S19 and collecting terms of O(1) leads to

NX

k=1

⇣
Fk � M̂

(k)
p

⌘
@XFk = 0, (S23)

whose solution, X0, is the required result in the absence of noise.
Next, equating the terms of O(✏) in eq S19 and solving for X1 gives,

X1 =
NX

k=1

zkbk, (S24)

where

bk = A
�1 · @XFk and A =

NX

k=1

@XFk @XFk. (S25)

The expected value and variance of the first order correction, X1, are therefore

E[X1] =
NX

k=1

E[zk]bk, (S26)

Var[X1][m] =
NX

k=1

Var[zk] [bk]
2
[m] , (S27)

where [m] denotes the mth component of the vector. The expected value of the noise is zero in practice, i.e., E[zk] = 0.
Therefore, eq S26 shows that the expected value of the first order correction to the required solution is also zero, i.e.,
E[X1] = 0. Thus, to O(✏) the least squares procedure extracts the required parameters accurately in measurement.

Collecting the O
�
✏
2
�
terms and solving for X2 gives

X2 = A
�1 ·

NX

k=1

 
zkX1 · @2

XFk

� 1

2

�
X1 · @2

XFk ·X1

�
@XFk � (X1 · @XFk)X1 · @2

XFk

!
. (S28)

Unlike the O(✏) correction in eq S26, the expected value of X2 is generally not zero when the expected value of the
noise, E[zk], is zero. This has an important consequence to estimation of the true parameters: there will be bias in
the parameter estimate from the least squares procedure. This bias is calculated using eqs S24 and S28 to be

E[X2] = A
�1 ·

NX

k=1

 
E
⇥
z
2
k

⇤
bk · @2

XFk

�
NX

j=1

E
⇥
z
2
j

⇤✓1

2

�
bj · @2

XFk · bj

�
@XFk + (bj · @XFk)bj · @2

XFk

◆!
, (S29)

where Fk and its derivatives are specified at X0; see eq S21. Thus, eq S29 defines the second order correction to the
fit parameters in the presence of noise in terms of the required (noiseless) fit parameters, X0.

It is observed in eq S29 that if the curvature of the fitting function is nonzero, i.e., the tensor @
2
XFk is nonzero,

there will be a nonzero bias due to the presence of noise. The true value of the required parameters, X0, is calculated
by solving

E[X] = X0 + ✏E[X1] + ✏
2 E[X2] +O

�
✏
3
�
, (S30)

where E[X1] = 0 in practice, as discussed above.
Figure S6 shows the utility of eq S30 by comparison to Monte Carlo simulations (10,000 individual simulations per

data point) where excellent agreement is observed; see Section S8.2 for details.
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Figure S6. E↵ect of noise on the extracted fit parameters using the least squares procedure. Monte Carlo simulations showing
bias in the mean radius and slip length extracted using the least squares procedure, for the described SMR system with a
hypothetical 125 nm radius gold particle with a 5 nm slip length. Data for the measured slip length is identical to Figure 3c.
The horizontal axis specifies the average standard deviation of the mass discrepancy parameter, ↵av, which coincides with that
of the relative frequency noise over all modes; ↵av = 0.0401 is the experimental value from the measurements. Red curves
are theoretical results from the derived asymptotic theory, eq S30. Blue dots are the mean of Monte Carlo simulations with
10,000 runs; error bars specify 2 standard errors of the mean. Equation S30 accurately predicts the observed bias of the fitting
procedure in the Monte Carlo simulations.

S8.2. Monte-Carlo simulations of the methodology to measure particle radius and slip length

The overall performance of the described methodology for measuring the true radius and slip length of a single par-
ticle is further assessed here using Monte Carlo simulations with details of the implementation as discussed previously.
This extends simulation data presented in Figure S6 by examining performance as the slip length and particle radius
are varied systematically. Simulations are performed by generating theoretical frequency shift curves for vibrational
modes 2 to 6 from eqs 2–4, for a specified radius and slip length; reported on the axes/captions of Figures S7 and S8.
A fixed frequency noise level of ✏ ⌘ ↵av = 0.0401 corresponding to the experimental value (from Table S2) is used
throughout this section; ✏ is defined in Section S8.1.

Varying the slip length: A 150 nm radius spherical particle is used whose specified slip length is systematically
varied—10,000 individual simulations are performed for each radius/slip length combination. Output of the Monte
Carlo simulations is analyzed using the least squares procedure detailed in Section S8.1; eq S30 is used to remove bias
induced by the added noise. Results of this analysis are given in Figure S7 which shows that the described procedure
accurately extracts the particle radius and slip length within 2 standard errors of the mean.
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Figure S7. Monte Carlo simulations of least squares procedure to extract the true radius and slip length. Monte-Carlo results
for 150 nm gold particles using the noise level from experimental while systematically varying the slip length. 10,000 simulated
particle measurements are used for each slip length. The radius and slip length are subsequently fitted in the same manner as
the experimental measurements. Red dashed lines are the specified (and expected) result and blue dots are the mean results
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determined in all cases.
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Figure S8. E↵ect of noise on the least squares procedure for extracting the true radius and slip length—no-slip particle. Monte-
Carlo results for no-slip particles using the noise level from experiment while varying the particle radius. 10,000 simulated
particle measurements are used for each specified radius, from which the radius and slip-length are extracted using the least
squares procedure. For particles of radii greater than ⇠115 nm the analysis correctly recovers the expected no-slip result (red
dashed line). Blue dots are means of the Monte-Carlo simulations with errors bars specifying 2 standard errors of the mean.

Varying the particle radius: In contrast, Figure S8 shows results where no-slip is specified at the particle surface
and the particle radius is varied. The radius and slip-length are then extracted from Monte Carlo simulation data
using the same least squares procedure. Because the relative frequency shift, �fn/fn, increases linearly with the
observed buoyant particle mass, the relative added noise is inversely proportional to this mass (i.e., the radius cubed)
in Figure S8. Consequently, the asymptotic theory in eq S30 is expected to break down for small particle size where
the noise becomes relatively large (violating a primary constraint of the asymptotic theory). Indeed, it is observed
that for particles of radius smaller than ⇠115 nm, the extracted slip length is inaccurate. This data also shows that
the use of small particles leads to small signal-to-noise (large error bars) which limits the ability to accurately measure
the slip length; see Figure S9 for examples of the frequency measurements for particles with di↵erent radii.
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S9. STATISTICAL ANALYSIS OF SLIP LENGTH VERSUS RADIUS DATA

A statistical analysis using linear regression is performed to test for independence of the slip length on particle
radius. A high p-value (p = 0.57) is observed indicating there is no evidence for a correlation between radius and
measured slip length. Moreover, the R2 value of this linear regression is very small 0.018 (⌧1). Hypothetically, if the
p-value were to be small (e.g., less than 0.05), this minute R2 value would indicate that the radius accounts for 2% of
the observed variance in the measured slip length—which is also negligible. Thus, regardless of the p-value there is no
statistically significant and meaningful relationship between the measured slip length and particle radius. A similar
conclusion arises if a higher-order polynomial is used.

S10. MEASURED FREQUENCY SHIFT CURVES VERSUS PARTICLE SIZE

Figure S9 shows sample measured data for the frequency shifts of modes 2 to 6 of the SMR used in this study.
Increasing the particle size clearly increases the measured signal-to-noise ratio, facilitating measurement. This data
is complementary to that presented in Figure 1c; Figure S9b is identical to Figure 1c.
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Figure S9. Measured relative frequency shifts for modes 2 to 6 of the SMR. Sample frequency shift signals of gold nanoparticles
as they pass through the SMR’s microfluidic channel. Particles with radii (a), 67.9 nm, (b), 125.6 nm and (c), 205.0 nm. The
two larger particles have a large signal-to-noise ratio allowing for a robust fit of the radius and slip length. The larger particle
in panel c, however, is a↵ected by the bounding wall and thus the fitted slip length is inaccurate (see Figure S4b)—it is not
used in the final reported measurements. The signal-to-noise ratio of the smallest particle shown is low which hinders accurate
measurement of its slip length.

S11. A BOUNDARY INTEGRAL METHOD FOR WALL-BOUNDED FLOWS

The numerical procedure for the results presented in Section S7 is now detailed. Nondimensional variables are used
throughout with identical scalings to Section S5. A boundary element method is used to numerically solve the flow
specified by the unsteady Stokes equations, eq S1. The boundary integral equation for the velocity field, u, at a point,
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r0, on the surface S of a domain is

u(r0) =� 1

4⇡

Z

S
f(r) ·G(r� r0) dS(r)

+
1

4⇡
PV

Z

S
u(r) · [T(r� r0) · n(r)] dS(r) ,

(S31)

where r and r0 are position vectors from the origin. We choose S ⌘ Sp [ Sc with Sp to be the particle surface and
Sc the bounding (internal) walls of the SMR, f(r) is the distribution of surface forces, G(r� r0) is the second order
Green’s function tensor, T(r� r0) is the third order tensor defining the stress field due to the Green’s function tensor
and n(r) is the normal vector of the surface pointing into the fluid. Here, PV represents the Cauchy principal value
of the integral. The Green’s function tensor for the unsteady Stokes equations is

G(r� r0) =
A(r̄)

|r� r0|
I+

B(r̄)

|r� r0|3
(r� r0)(r� r0), (S32)

where I is the identity tensor, |r� r0| is the distance between r and r0, r̄ = |r� r0|(1� i)
p

�/2 is a scaled length, and

A(r̄) = 2 exp(�r̄)

✓
1 +

1

r̄
+

1

r̄2

◆
� 2

r̄2
, (S33)

B(r̄) = �2 exp(�r̄)

✓
1 +

3

r̄
+

3

r̄2

◆
+

6

r̄2
. (S34)

The stress tensor, T(r� r0), is not required as we show next.
The noninertial reference frame, where the SMR’s internal solid walls (boundaries) are stationary, is used so that

the second integral in eq S31 is only over Sp. The boundary conditions on the flow are therefore

u = 0, r 2 Sc (S35)

u = (V � 1)ẑ, r 2 Sp (S36)

where ẑ is a Cartesian unit vector in the direction of the oscillatory flow. We now consider a (hypothetical) bulk
flow of u0 = ẑ which has pressure p

0 = i�z where z is the coordinate in the direction of ẑ. Use of this flow field, the
boundary integral equation, eq S31, and the definition of the Green’s function tensor, eq S32, leads to the identity,

PV

Z

Sp

ẑ(r) · [T(r� r0) · n(r)] dS(r)

= �i�

Z

Sp

zn(r) ·G(r� r0) dS(r)� 4⇡ẑ.
(S37)

Substituting eq S37 into eq S31 gives

u(r0) = � 1

8⇡

Z

S
F(r) ·G(r� r0) dS(r) , (S38)

where u is specified in eqs S35 and S36 and

F(r) = f(r) + i�(V � 1)zn(r)

(
1, r 2 Sp

0, r 2 Sc
. (S39)

Note that the solution to eq S38 does not include the fictitious force due to the noninertial reference frame which must
be added to calculate the true force, i.e. ftrue(r) = f(r) � i�zn. The mass discrepancy parameter is then calculated
in an analogous procedure to that described in Section S5.

The SMR microfluidic channel length and width are considered to be much larger than its height, which allows
a local analysis of the particle motion; the SMR is approximated to be infinitely long relative to its height so that
the walls move with constant velocity in the vicinity of the particle. An axisymmetric domain is then centered on
the particle with the fluid domain along the SMR length and width being infinite; the maximal value of the radial
coordinate is increased so that the calculated mass discrepancy parameter is insensitive to this value. An example of
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Figure S10. Contour used in axisymmetric boundary integral numerical calculation. Example of the contour used in the
boundary integral calculation, in cylindrical polar coordinates; � and z are the radial and axial coordinates, respectively. The
upper and lower horizontal lines correspond to the walls of the SMR’s microfluidic channel whereas the semi-circle is the
sphere—placed at the center of the microfluidic channel here. The radial extent of this domain is increased so that it does not
a↵ect the resulting mass discrepancy parameter.

the axisymmetric fluid domain is given in Figure S10. Equation S38 is transformed into (cylindrical) axisymmetric
coordinates, giving

u(r0) = � 1

8⇡

Z

C
F(r) ·M(r� r0) dC(r) , (S40)

where C = Cp [ Cc is the contour of the particle and the SMR’s microfluidic channel, respectively; see Figure S10.
The axisymmetric Green’s function tensor, M, now represents a ring of point forces and is defined by

M = �

Z 2⇡

0
{(Gxx cos�+Gxy sin�) �̂�̂ + (Gxz cos�+Gyz sin�) �̂ẑ+Gxz ẑ�̂ +Gzz ẑẑ} d�, (S41)

where � is the azimuthal coordinate normal to the contour, C (which lies in the �-z plane; see Figure S10) and
�̂ is the unit vector in the radial �-direction. Gxx, Gxy etc. are elements of the Green’s function tensor expressed
in a Cartesian basis (with coordinates x, y, z); see ref 10 for further details on the implementation of axisymmetric
boundary integral methods.

Equation S40 is solved by discretizing the contour, C, into N elements where F(r) is chosen to be constant on each
element; in addition, the �-integration in eq S41 is performed by discretizing its domain into M elements. For the
nonsingular elements (i.e., when r0 is on a di↵erent element to r) a 20-point Gaussian-Legendre quadrature scheme
is used on both the contour and the �-integration. For the singular elements, the singularity is logarithmic in nature
and so a quadrature for logarithmic singularities as described in ref 10 is used. The number of elements required
for convergence varies depending on proximity of the particle to the wall and the oscillatory Reynolds number. In
general, the larger the oscillatory Reynolds number and closer the particle is to the wall, the greater the number of
elements required. For the largest oscillatory Reynolds numbers used throughout this study, if the particle is more
than one radius away from any wall then 128 elements (40 on the particle and 88 on the walls) gives convergence in
the mass discrepancy parameter, ↵, of greater than 99.9%. When the particle is in the vicinity of one of the walls,
additional elements are included in the lubrication region until convergence of 99.9% is achieved (up to 256 elements
are needed which depends on both the channel height and the oscillatory Reynolds number, �).

The mass discrepancy parameter, ↵, is calculated from the force on the surface of the SMR’s microfluidic channel
for a particle located at a specific position. Performing these calculations at the oscillatory Reynolds number, �, for
each excited mode of the SMR gives the required result for the mass discrepancy parameter, ↵, for a no-slip particle
(in the absence of frequency noise).

Numerical discretization in the boundary element method is systematically refined as discussed above to achieve a
convergence of 99.9% in the mass discrepancy parameter; this convergence with increasing discretization is observed
to obey a geometric progression. Hence, the discretization error in the evaluated slip length is reduced through the
use of Shank’s transformation.11 The di↵erence between the numerical results from Shank’s transformation and the
finest discretization used in the boundary element method are included in the errors bars of Figures S5 and S4.
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S12. EXPERIMENTALLY REALIZABLE MEASUREMENTS

This section lists a series of ready-for-use particle/fluid/SMR systems that provide the basis for future measurements
of slip. They use existing and readily available materials and devices. See Table S4 and its caption for details.

Table S4. Experimentally realizable slip measurements. SMRs: Device 1 used in present study; Device 2 has larger channel
height of 8 µm (“8×8” device in ref 12). Nanoparticles: Available from Sigma-Aldrich, except large aluminum oxide nanoparti-
cles from MSE Supplies. Surface properties: Gold nanoparticles in citrate buffer, phosphate buffer and thiol coatings. Varying
electrolyte concentration allows effect of surface charge on slip length to be studied; see recent molecular dynamics study.13

Lower limit of particle radius specified by sufficient signal-to-noise; upper limit to minimize effect of SMR bounding walls. All
systems use multiple SMR modes with Reynolds numbers 0.1–100, where measurements are most sensitive to slip.

Nanoparticle Liquid Radii range (nm)

Device 1 Device 2

Gold Water(a) 115-160 150-500

Gold Water + electrolytes(b) 115-160 150-500

Gold Acetone(c) 115-160 150-500

Gold N-decane(d) 115-160 150-500

Gold Ethanol(e) 115-160 150-500

Silver Liquids (a)–(e) 145-160 200-500

Aluminum oxide Liquids (a)–(e) None 300-500

Silica Liquids (a)–(e) None 300-500

Gold Glycerol None 150-500

Silver Glycerol None 200-500
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