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Supplemental Discussion

To obtain mass, volume, and density, we require buoyant mass measurements in two fluids of different densities:[
mb1

mb2

]
=

[
1 −ρ1
1 −ρ2

] [
m
v

]
where ρ1 and ρ2 are the densities of the fluid, and m and v are the particle mass and volume, respectively.
Solving directly, we get [

m
v

]
=

1

ρ2 − ρ1

[
ρ2 −ρ1
1 −1

] [
mb1

mb2

]

This leads us to the three identities for obtaining mass, volume and density from two buoyant mass measure-
ments.

m =
mb1ρ2 −mb2ρ1

ρ2 − ρ1
(1)

ρ =
mb1ρ2 −mb2ρ1
mb1 −mb2

(2)

v =
mb1 −mb2

ρ2 − ρ1
(3)

Importantly, mass and volume are linear combinations of the two buoyant mass measurements. Density, however
is not. Figure S3 (below) shows the contour lines for both mass and density obtained from two buoyant
mass measurements in H2O and D2O. Density is monotonically encoded in the angle of the two buoyant mass
measurements, however this function is far from linear. For particles in the fourth quadrant (consisting of
particles which sink in one fluid and float in the other), the transform between buoyant masses and density is
relatively linear. However when the particle density is far beyond the density of either fluid (in the first or third
quadrants), the gradient is extremely steep and so small errors in buoyant mass generate large errors in density.

To understand the error sources in our measurements, we first consider only the case of errors in buoyant mass
estimation. We take these to be predominantly additive errors and estimate their magnitude by making repeated
measurements on a single cell.

In calculating mass and volume, since they are linear combinations of buoyant masses, the errors are also
transformed linearly. Hence, for a particle measured in H2O (ρ ≈ 1.0 g·cm−3) and D2O (ρ ≈ 1.1 g·cm−3)
with buoyant mass errors with standard deviation σmb , the standard deviation of the resulting mass estimate
is 14.87σmb . For a particle measured in fluids of density ρ1 and ρ2, the standard deviation of m̂ is

*denotes equal contribution.
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σm̂ =

√
ρ22 + ρ21

(ρ2 − ρ1)
σmb

Now we turn to the density estimator:

ρ̂ =
mb1ρ2 −mb2ρ1
mb1 −mb2

If we again assume that each buoyant mass measurement includes a random error εi (for the measurement made
in fluid i), then we can rewrite the above by plugging in mbi = m(1 − ρf

ρ ) + εi

ρ̂ =
m(ρ2 − ρ1) + ρ2ε1 − ρ1ε2
m
ρ (ρ2 − ρ1) + ε1 − ε2

= ρ
m(ρ2 − ρ1) + ρ2ε1 − ρ1ε2
m (ρ2 − ρ1) + ρε1 − ρε2

Here we see that the variance of the density estimator will depend on the true mass and density. We turn
to Monte Carlo simulations to understand how a joint distribution over mass and density is affected by errors
in buoyant mass. In particular, we take the true joint distribution to be constrained to only one possible
density and then observe how the addition of noise to the buoyant mass measurements affects the observed joint
distribution.

Evidence for complete fluid exchange

If the intracellular H2O molecules were not being completely replaced by D2O molecules, then we’d expect to
measure a lower density (in the limit of no exchange occurring at all, we’d be measuring the total density of the
particle, not the dry density). While we cannot be certain that 100% of the intracellular water has exchanged
by the time we make the second measurement, we did verify that we do not see a statistically significant
correlation between time spent in D2O and dry density for E. coli. In yeast, of four replicate experiments, we
only once saw a statistically significant correlation between dry density and time spent in D2O, however the
correlation explained only 5% of the variance in dry density, and suggested that the dry density was changing
by 0.003 g cm−3 s−1. This suggests that at a bare minimum, 2-3 seconds after immersing a cell in D2O that
the exchange process has reached an asymptote, which we think is likely to be near complete water exchange.
This is consistent with previous findings (1).

Description of water-content measurement method

If a particle with a water volume of Vwater is measured in a cell-impermeable fluid of density ρf , and that same
particle is then placed in a cell-permeable fluid, also of density ρf and the buoyant mass is again measured,
then we can write the buoyant masses obtained as:

mb1 = mdry

(
1 − ρf

ρdry

)
+mH2O

(
1 − ρf

ρH2O

)
mb2 = mdry

(
1 − ρf

ρdry

)
Thus the water mass can be obtained as

mH2O =
mb1 −mb2(
1 − ρf

ρH2O

)
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Necessity of single-cell measurements

While previous work in our lab and others (2,3) have used population means to estimate mean particle density,
this method will not work for estimating dry density. The method used in these publications amounts to first
measuring hundreds to thousands of particles in fluid 1, followed by measuring a similar number in fluid 2. The
mean buoyant mass of each population is calculated, yielding µ1 and µ2. We then plug these in as mb1 and mb2

in supplementary equation 2. However, this measure relies on a reasonable degree of certainty in µ1 and µ2,
which in turn depends on several factors:

• the actual dispersion of the population masses, σm
• the sample sizes used, n1 and n2
• the magnitude of the error in a single measurement, σε

We’re interested in the mean of the buoyant mass distribution in fluid i. Since the standard deviation of buoyant

mass measurements in fluid i is given by σi =
√
σ2
m(1 − ρi

ρ )2 + σ2
ε and we assume measurements are independent

and identically distributed, the standard error of µ̂i is

√
σ2
m(1− ρi

ρ )2+σ2
ε

n . For very monodisperse particles (as were
typically measured in previous work (2,3)), this error is dominated by σε, which is typically quite small. In the
case of populations of cells, populations are often very heterogeneous (CV ≈ 33% for typical E. coli samples), and
so σm dominates to such a degree that to achieve high precision in µ̂i requires tens to hundreds of thousands of
cells, a number currently beyond the throughput of the SMR within a several-hour experiment. Making repeated
single-cell measurements provides a much more accurate estimate of the true dry density because it avoids the
problem of the population variance - each cell is measured in two fluids individually, and those measurements
are paired together, allowing density determination without requiring population parameters.
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SI Figures

Figure S1: Using the SMR to measure the buoyant mass of a cell in H2O and D2O. The measurement starts
with the cantilever filled with H2O (blue, box 1). The density of the red fluid is determined from the baseline
resonance frequency of the cantilever. When a cell passes through the cantilever (box 2), the buoyant mass of
the cell in water is measured as a transient change in resonant frequency. The direction of fluid flow is then
reversed, and the resonance frequency of the cantilever changes as the cantilever fills with D2O, a fluid of greater
density (red, box 3). The buoyant mass of the cell in D2O is measured as the cell transits the cantilever a second
time (box 4). From these four measurements of fluid density and cell buoyant mass, the absolute mass, volume,
and density of the cell’s dry content are calculated. (Adapted from Grover et al. (4)).
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Figure S2: Dry mass vs dry density of single E. coli cells. Same data as shown in Fig 2., but plotted to show
single cells rather than just marginal distributions.
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Figure S3: a) Contour map of density as a function of two buoyant mass measurements. b) In polar
coordinates, the angle can be shown to map directly to density. c) Contour map showing cell mass as a function
of two buoyant masses. This function is linear, with a gradient oriented to the lower right (higher buoyant mass
in H2O, lower buoyant mass in D2O).
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Figure S4: Comparison of measured data (solid lines) to simulations of buoyant mass measurement errors
propagating through the density calculation for E. coli samples. Dashed lines show expected dry density
distributions assuming all cells have the same density and that density is the median observed dry density
(vertical line).

7



1.30 1.35 1.40 1.45 1.50 1.55 1.60
0

5

10

15 unbudded
budded

0h
n=149
n=39

P=0.0006

1.30 1.35 1.40 1.45 1.50 1.55 1.60
0

5

10

15

20
3h
n=51
n=102

P=0.1020

1.30 1.35 1.40 1.45 1.50 1.55 1.60

P
ro

ba
bi

lit
y 

de
ns

ity

0

5

10

15 8h
n=95
n=97

P=0.6371

1.30 1.35 1.40 1.45 1.50 1.55 1.60
0

5

10

15 15h
n=73
n=98

P=0.4213

1.30 1.35 1.40 1.45 1.50 1.55 1.60

Dry density (g ⋅ cm−3)

0
2
4
6
8

10
12
14

24h
n=111
n=41

P=0.0002

Figure S5: Dry density distributions for budded and unbudded yeast cells, by timepoint. P-values are for
two-sided Mann-Whitney U tests.
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Figure S6: Contour plots of dry density estimates when the buoyant mass measurements aren’t made in
pure H2O or pure D2O. Intracellular water fractions are in fraction of total volume. Dashed line shows equal
departure (in density) from pure fluids. Pure H2O and 9:1 (v/v) D2O:H2O densities are the red dot in the lower
left corner of each figure, at which point the dry density is calculated correctly. As salts (or other impermeable
components) are added to the fluid, it becomes more dense and the intracellular water is no longer neutrally
buoyant. This introduces systematic error into the dry density measurement, which depends on how much of
the cell is water. The measurements we’ve made using 1X PBS in both fluids are shown as black dots.
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Figure S7: Time between measurements (exposure time) vs calculated dry density for single cells in each of
nine analyses of E. coli samples (2-3 technical replicates for each of 4 samples). Assuming the cell was nearly
immediately immersed in D2O after the first measurement, this should be a good approximation of time spent
in D2O. Line shows ordinary least squares fits, which agreed well with robust fits (Huber weights). Correlations
are all statistically insignificant at α = 0.05 (α = 0.006 for each test, using Bonferroni correction). P-values are
given for slope being non-zero using one-sided t-test.
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Figure S8: Time between measurements (exposure time) vs calculated dry density for single S. cerevisiae cells
in four experiments. Line shows ordinary least squares fits, which never account for more than 5% of the total
variance. Because these experiments were done three-channel devices, much more precise control over exposure
time could be achieved, and this parameter was deliberately varied, yielding the discrete times seen above. Only
one experiment showed a statistically significant correlation (α = 0.05/4 = 0.0125 using Bonferroni correction).
P-values are given for slope being non-zero using one-sided t-test.
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