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Abstract

Mass and growth rate are highly integrative measures of cell physiology not discernable via genomic measurements.
Here, we introduce a microfluidic platform enabling direct measurement of single-cell mass and growth rate upstream
of highly multiplexed single-cell profiling such as single-cell RNA sequencing. We resolve transcriptional
signatures associated with single-cell mass and growth rate in L1210 and FL5.12 cell lines and activated
CD8+ T cells. Further, we demonstrate a framework using these linked measurements to characterize
biophysical heterogeneity in a patient-derived glioblastoma cell line with and without drug treatment.
Our results highlight the value of coupled phenotypic metrics in guiding single-cell genomics.
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Background
Recent experimental advancements have dramatically
improved the throughput and cost-efficiency of single-
cell RNA sequencing (scRNA-seq) [1–3]. However,
gene expression measurements alone cannot fully de-
scribe many complex cellular processes [4, 5]. Thus,
parallel efforts have focused on linking single-cell tran-
scriptomics with complementary data that can provide
further information to help guide analyses and
contextualize distinct cellular states. For instance, vari-
ous multi-omic methods have been developed to link
measurements such as protein abundance, DNA se-
quence, or methylation with gene expression from the
same single cell [6–9]. Gene expression measurements
have also been linked to single-cell location within a
tissue to enable study of cellular development and dif-
ferentiation at unprecedented detail [10–12]. More-
over, single-cell functional assays have been coupled
with mRNA expression to obtain novel insights into
the relationships among cellular electrophysiology,
morphology, and transcription [13]. Taken together,

these approaches demonstrate how linked single-cell
data sets can afford a deep understanding of various
cellular phenotypic states that may be difficult to glean
through transcriptomic measurements alone.
Linked gene expression data sets are of particular

interest when considering recent technological devel-
opments that enable the precise measurement of vari-
ous single-cell biophysical properties, such as mass
and growth rate [14, 15]. As highly integrative metrics
of cellular state, these parameters offer unique in-
sights into a wide range of biological phenomena, in-
cluding (i) basic patterns of single-cell mass and
growth regulation; (ii) biophysical changes associated
with immune cell activation; and, (iii) cancer cell hetero-
geneity in the presence or absence of drug [16–18].
However, the approaches and devices previously used
to collect these biophysical measurements have pre-
cluded linking these properties with molecular profiling
of the same cell.
To our knowledge, there have been no methods

reported to date that allow for linked measurements of
cellular mass, growth rate, and transcriptome-wide
gene expression from the same cell. It has therefore
been challenging to characterize the underlying tran-
scriptional programs associated with cellular mass and
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growth rate variability observed in a range of normal
and dysfunctional biological contexts.
Here, we describe and characterize a microfluidic

platform that enables the measurement of single-cell
mass and growth rate immediately upstream of a range
of highly multiplexed single-cell endpoint assays. We
leverage this approach in combination with scRNA-seq
to examine linked single-cell biophysical and transcrip-
tomic properties in cell lines and primary cells. Finally,
we apply this method to examine biophysical hetero-
geneity in a patient-derived glioblastoma (GBM) can-
cer cell line in the presence or absence of drug,
highlighting the potential utility of guiding single-cell
genomic measurements with biophysical metadata.

Results and discussion
Serial SMR platform with downstream collection for
scRNA-seq
Our system relies on a modified version of a previously
described serial suspended microchannel resonator
(sSMR) device (Fig. 1) that utilizes an array of high-
resolution single-cell buoyant mass sensors placed
periodically along the length of a long microfluidic
channel to allow a single cell’s mass to be measured
periodically as it traverses the channel [17]. In addition
to providing mass information, this series of measure-
ments can also be used to determine the mass

accumulation rate (MAR), or growth rate, of each cell.
Here, taking advantage of real-time access to the data gen-
erated by each SMR mass sensor, we have modified the
system to use peak detection in the final cantilever. Detec-
tion at this cantilever indicates a cell exiting the mass sen-
sor array and triggers the motion of a three-dimensional
motorized stage which positions a PCR tube containing
lysis buffer to capture each single cell as it is flushed from
the system. This enables, for the first time, measurements
of the biophysical properties of mass and growth rate to
be linked to genomic profiles—here RNA-seq—at the
single-cell level (Methods).
We sought to endow our platform with sufficiently

high throughput to enable measurements on popula-
tions of cells that may change over time. The total time
required to flush the system’s dead volume and release
each single cell (20 s for the system implementation
described here) sets a theoretical maximum through-
put for the platform to avoid the collection of multi-
plets. Crucially, to minimize the frequency of failed
capture events, we implemented a new fluidic scheme
whereby single cells are loaded into the array of mass
sensors at fixed intervals (Additional file 1: Figure S1,
Additional file 1: Note S1) [19]. Ultimately, this fluidic
scheme allows us to achieve a throughput of one cell
approximately every 30 s (for a throughput of up to
120 cells per hour) with minimal failed collection

Fig. 1 Serial SMR platform with downstream collection for scRNA-seq. Schematic representation of the serial SMR platform, which includes an
array of SMR mass sensors, separated by a serpentine delay channel to periodically measure the buoyant mass of a single cell. Independent
control of the upstream and downstream pressures applied to two bypass channels allows for single-cell spacing at the loading entrance of the
array (top left of sSMR image) and single-cell isolation at the unloading exit (bottom right of sSMR image) (Additional file 1: Figure S1, Additional file 1:
Note S1). Using real-time peak detection at the final mass sensor, a three-dimensional motorized stage is triggered to capture each individual cell
directly in lysis buffer for downstream scRNA-seq. Based on well location each cell is subsequently matched to its corresponding biophysical data
collected from the sSMR, including mass and MAR, as schematized in the top-right panel. These linked single-cell data sets can then be used to
determine gene expression signatures associated with mass and growth rate variability, as schematized in the bottom-right panel
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events due to co-release. This offers a two-fold
throughput improvement over previous implementa-
tions of biophysical measurements alone, while afford-
ing the additional ability to capture each individual cell
downstream for processing—e.g., scRNA-seq.

Unique gene expression profiles related to specific
biophysical properties and underlying cell biology
To validate our method for collecting linked single-cell
biophysical and gene expression data, we first mea-
sured two murine lymphoblast cell lines (L1210 and
FL5.12) that have well-characterized mass and growth
properties that are stable over the course of long-term
propagation in bulk culture (Fig. 2) [15–17, 20]. Single
cells collected downstream of the sSMR for scRNA-seq
consistently yielded high-quality cDNA libraries, with
85 out of 87 individual L1210 cells and 124 out 144 in-
dividual FL5.12 cells with paired biophysical data pass-
ing initial quality controls (e.g., number of genes
detected greater than 4000, Methods, Additional file 1:
Figure S2).

In order to determine the transcriptional signatures as-
sociated with the spectrum of biophysical states in these
cells, we ranked genes by how strongly their expression
levels correlated with single-cell biophysical data (Spear-
man’s correlation coefficients, Additional file 2: Table S1;
NB Both Spearman and Pearson correlation methods
yielded similar results for all comparisons considered,
Additional file 1: Figure S3). We then utilized the GSEA
Preranked tool to determine which gene sets showed sig-
nificant enrichment at either end of these ranked lists
(FDR < 0.05, Methods, Additional file 3: Table S2) [21].
For both cell lines, genes ranked by correlation strength
with single-cell mass (final mass measurement collected
before cell lysis) were highly enriched for functional anno-
tations relating to cell cycle progression (FDR < 0.05,
Additional file 3: Table S2, Fig. 2). Specifically, genes re-
lated to early cell cycle events immediately following cell
division—such as DNA replication initiation—were more
highly expressed in cells with lower masses, whereas genes
related to late cell cycle events that occur just prior to
division—such as chromosome segregation—were

a b

Fig. 2 Linked biophysical and gene expression measurements of single L1210 and FL5.12 cells. a Plot of mass accumulation rate versus buoyant
mass for single L1210 cells (top, n = 234) and single FL5.12 cells (bottom, n = 296) measured in the sSMR. Kernel density plots are included on
both axes. b Heat maps showing the relative expression of various cell cycle-related genes for subsets of the L1210 (top, n = 85) and
FL5.12 (bottom, n = 124) cells depicted in (a) that were captured downstream for scRNA-seq. Cells are ordered by buoyant mass (bar
plots above heat maps). Entries are colored by expression z-score. As a demonstration, the heat map includes genes with expression
levels that showed a significant correlation with buoyant mass from the chromosome segregation (black bar, n = 58 and n = 31 for the L1210 and
FL5.12, respectively) and DNA replication (gray bar, n=11 and n= 8 for the L1210 and FL5.12, respectively) gene ontology subsets (FDR< 0.05, Additional file 1:
Figure S4, Additional file 3: Table S2, Additional file 4: Table S3, Methods)
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more highly expressed in cells with higher masses
(Additional file 4: Table S3). Interestingly, both cell
lines revealed a larger number of genes that showed a
significant positive correlation with mass relative to
the number of genes with a significant negative correl-
ation, though this may be impacted, in part, by the tran-
script capture inefficiencies inherent in scRNA-seq
protocols (Additional file 1: Figure S4) [22].
The manifestation of cell cycle-related gene expres-

sion in scRNA-seq data has been of particular interest
to both further characterize mechanisms of cell cycle
progression and regress out the contributions of cell
cycle variability that may act as a nuisance parameter,
dominating gene expression heterogeneity among sin-
gle cells and masking more subtle biological signals [2,
23, 24]. We therefore sought to determine how previ-
ously annotated cell cycle signatures corresponded to
the single-cell mass measurements collected here. To
do so, we established cell cycle phase-specific (G1/S
and G2/M) scores using an approach inspired by
Macosko et al. [2] (Additional file 1: Figure S5, Add-
itional file 1: Note S3). Cells assigned to either the G1/
S or G2/M phases of the cell cycle using gene expres-
sion data alone showed significant differences in cell
mass for both the L1210 and FL5.12 cells that were
consistent with expectations (i.e., lower mass for G1/S
cells; P < 0.001, Mann-Whitney U test). Furthermore, for
both cell types, cell mass showed a clear negative correl-
ation with G1/S scoring (ρ = − 0.46 and ρ = − 0.25 for
L1210 and FL5.12, respectively; P < 0.005) and a clear
positive correlation with G2/M scoring (ρ = 0.74 and ρ =
0.54 for L1210 and FL5.12, respectively; P < 0.001).
Together, these results provide additional evidence of
coordination between cell mass and cell cycle-related gene
expression in actively proliferating cells.
To further confirm the consistency and reproduci-

bility of the linked biophysical and gene expression
data sets collected with this platform, we compared
the L1210 and FL5.12 results with scRNA-seq data
from additional independent experiments. For L1210
cells, we found that genes that showed significant cor-
relations with cell mass were also significantly
enriched among those previously shown to correlate
with time since cell division, a proxy for cell cycle
progression (FDR < 0.05, Additional file 1: Figure S6,
Additional file 1: Note S2) [25]. In FL5.12 cells, mean-
while, we observed that the genes which showed sig-
nificant correlations between their expression levels
and biophysical properties were highly reproducible
across two independent linked biophysical and gene
expression experiments (FDR < 0.05, Additional file 1:
Figure S6, Additional file 1: Note S2). These results dem-
onstrate the quality and reproducibility of transcriptional
measurements collected downstream of the sSMR.

Given that we identified a linear relationship between
mass and MAR in these cell types (ρ = 0.67 and ρ = 0.56
for L1210 and FL5.12, respectively; P < 0.001, Fig. 2), we
focused our analysis on mass-normalized MAR, deter-
mined by dividing each cell’s MAR by its corresponding
mass. We used this parameter, which measures a single
cell’s growth efficiency decoupled from mass-related
confounders, to resolve growth-related transcriptional
signatures in these two cell lines [18, 26]. For L1210
cells, genes ranked by strength of correlation between
expression level and growth efficiency did not reveal
any statistically significant enrichment of functional an-
notations (FDR > 0.05). The FL5.12 cells, however,
showed significant positive enrichment for functional
annotations related to cell cycle progression among
genes ranked by correlation strength with growth effi-
ciency (FDR < 0.05, Additional file 3: Table S2). Specif-
ically, subsets of genes implicated in the G1-S
transition showed a higher level of expression in cells
of intermediate mass with the highest growth efficien-
cies (Methods, Additional file 1: Figure S7, Additional
file 5 : Table S4) [27]. These results are consistent with
previous FL5.12 single-cell growth measurements,
which revealed an increase in growth efficiency ap-
proaching the G1-S transition followed by a decrease
later in the cell cycle [15].

Characterizing CD8+ T cell activation with linked
biophysical and gene expression measurements
While the L1210 and FL5.12 cells represent effective
model systems with stable biophysical and transcrip-
tional profiles, one of the benefits of the sSMR
platform is that it offers sufficient throughput to
characterize cell populations that may be changing in
their phenotypes over time [20, 25]. Primary CD8+ T
lymphocytes are a prime example of a cell population
that may exhibit dynamic behavior, as they are known
to drastically change their biophysical properties, tran-
scriptional states, and metabolic characteristics in re-
sponse to activation [17, 28, 29].
To characterize this response, we collected single-cell

biophysical and gene expression profiles from freshly iso-
lated, naïve murine CD8+ T cells which we stimulated in
vitro with antibody-based T cell receptor engagement and
CD28 co-stimulation (Fig. 3, Methods). We chose to
evaluate the 24 and 48 h time points to capture cells be-
fore and after their first division event, respectively [30].
Although the cells for both time points displayed similar
mass distributions, the cells measured after 48 h of ac-
tivation showed significantly higher growth efficiencies
(P < 0.001, Mann-Whitney U test, Fig. 3a, b).
Examining gene expression alone, we observed that

cells from these two populations showed differential
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expression patterns consistent with T cell activation,
including significant upregulation of Granzyme B
(Gzmb) and IL-2 receptor (Il2ra and Il2rb), as well as
significant downregulation of Ccr7 in the 48 h popula-
tion compared to the 24 h one (Bonferroni-corrected
P < 0.05, Additional file 6: Table S5). Similarly, gene set
enrichment analysis performed on genes ranked by ex-
pression fold change between these time points re-
vealed significant enrichment for gene sets related to
immune cell effector function and glucose metabolism,
consistent with functional and metabolic shifts that
have been previously characterized in activated CD8+
T cells (FDR < 0.05, Additional file 7: Table S6,
Additional file 8: Table S7) [28, 31]. Cells activated for

48 h also displayed a higher expression of genes related to
protein production, including those involved in translation
initiation and cytosolic ribosome activity (Additional file 8:
Table S7). Araki et al. recently demonstrated a similar
trend, noting an increase in translation activity over of the
course of early T cell activation, as cells become more pro-
liferative [32]. The measurements presented here suggest
that this increase in translation activity is accompanied by,
and potentially is tied to, increased growth efficiency ob-
served at 48 h compared to 24 h.
This population-level relationship between growth

efficiency and translation-related gene expression was
also observable at the single-cell level for cells acti-
vated for 48 h. Within this time point, genes ranked by

a

b c

Fig. 3 Linked biophysical and gene expression measurements of activated murine CD8+ T cells. a Plot of mass accumulation rate versus buoyant
mass for murine CD8+ T cells after 24 h (green points, n = 59) or 48 h (blue triangles, n = 49) of activation in vitro. Kernel density plots, using the
same color scheme, are included on the margins for both populations. ***P < 0.001, N.S. indicates not significant; Mann-Whitney U test. b
Plot of mass-normalized single-cell growth rates (growth efficiency) for the same murine CD8+ T cells activated for 24 or 48 h in vitro.
Groups were compared with a Mann-Whitney U test (***P < 0.001). c Box charts showing the Spearman correlation coefficients between
single-cell mass measurements and the expression of a subset of genes previously found to be related to cell cycle in activated CD8+ T
cells (300 genes) for cells activated for 24 or 48 h. For comparison, the null distribution of Spearman correlation coefficients for the same
subset of cells after randomly assigning single-cell mass measurements is shown for each time point (gray boxes, Methods). Groups were
compared with a Mann-Whitney U test (***P < 0.001, **P < 0.01)
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correlation strength with single-cell growth efficiency
once again showed significant enrichment for func-
tional annotations relating to translation machinery
(FDR < 0.05, Additional file 3: Table S2). Despite a
similar number of genes showing a significant correl-
ation with growth efficiency at the 24 h time point,
these genes did not show any significant functional en-
richment when ranked by correlation strength (FDR >
0.05, Additional file 1: Figure S4). This result suggests
that the coordination between single-cell growth effi-
ciency and translation-related gene expression occurs
later during T cell activation.
The 48 h time point also revealed a greater number of

genes that showed a significant correlation between ex-
pression level and cell mass relative to the 24 h time point
(Additional file 1: Figure S4). When determining the func-
tional role of genes ranked by expression correlation with
single-cell mass, the 48 h time point demonstrated signifi-
cant cell cycle functional enrichment (FDR < 0.05)
whereas the 24 h time point only showed a slight en-
richment for similar cell cycle-related annotations
(FDR < 0.1) and no significantly enriched terms other-
wise (Additional file 3: Table S2). However, when con-
ducting a cell cycle phase scoring analysis similar to
that described for the L1210 and FL5.12 cells, we
found that both the 24 and 48 h time points showed a
significant difference in mass between cells assigned to
the G1/S and G2/M phases of the cell cycle (P < 0.001,
Mann-Whitney U test, Additional file 1: Figure S5).
Furthermore, a previously described set of genes
known to correlate with an activated CD8+ T cell’s time
since division—a proxy for cell cycle progression—showed
a significant positive correlation with cell mass in both the
24 h and 48 h populations, though the strength of this
correlation did increase significantly by 48 h (P < 0.001,
Mann-Whitney U test, Fig. 3) [25]. As mentioned above,
the 24 and 48 h time points capture cells before and after
their first division event, respectively [30]. Although cells
are accumulating mass, or “blasting,” in the first 24 h, it is
not until roughly 30 h that cells undergo their first div-
ision and begin increasing in number and cycling in the
traditional sense [30, 33]. Taken together, these results
suggest that the coordination between cell cycle gene
expression and cell mass begins early during T cell
activation, even before cells begin proliferating, and in-
creases in strength later in T cell activation as cells
begin actively dividing.

Characterizing single-cell biophysical heterogeneity of
a patient-derived cancer cell line
Cancer cell drug responses are known to be highly het-
erogeneous at the single-cell level [18, 26], and it is
now well established that the presence of even a small
fraction of cells that are unresponsive to therapy can

lead to resistance and recurrence of cancers [34].
Single-cell transcriptional profiling has been shown to
provide a powerful means of characterizing such het-
erogeneity in clinically relevant tissue samples [35, 36],
yet the direct interrogation of drug response is still
most commonly measured in clinical trials and the la-
boratory using bulk viability assays [37]. Although ef-
fective in quantifying the relative fraction of resistant
cells within a heterogeneous population, these assays
rely on endpoint measurements. Taken too late, they
may miss responding cells (which are lost to cell death)
and/or the preceding molecular events that impact
survival; taken too early, bulk measurements can mud-
dle the features of responding and non-responding cell
subsets (Fig. 4a). However, we have previously shown
that, prior to viability loss, single-cell biophysical
changes of mass and MAR collected with the SMR can
predict response to drug treatment [18]. Therefore, we
reasoned that downstream molecular characterization
could be used to further contextualize single-cell mass
and growth rate heterogeneity both at baseline and in
response to perturbation with drug treatment.
To demonstrate a framework for the characterization of

single-cell biophysical heterogeneity in the presence or ab-
sence of drug, we decided to measure the effect of an
MDM2 inhibitor (RG7388, Roche) on BT159 cells, a
patient-derived cell line (PDCL) generated from a primary
glioblastoma (GBM) (Methods). GBM PDCLs are known
to be particularly heterogeneous with respect to cell
lineage and have a cancer stem cell like hierarchy pro-
posed to contribute to profound treatment resistance of
these tumors [38]. MDM2, meanwhile, typically binds to
p53 inhibiting its transcriptional activity and leading to
proteasome-mediated degradation [39]. In prior work, we
showed pharmacologic inhibition of MDM2 was a prom-
ising therapeutic avenue in GBM patients with wild-type
TP53 because in preclinical patient derived models, the
drug leads to increased expression and stability of p53, sig-
nificant responses and even tumor regression via induc-
tion of apoptotic cell death [40]. However, in vivo testing
revealed that, upon withdrawal of MDM2 inhibition, tu-
mors consistently relapsed, suggesting variable response
to treatment [40].
To characterize biophysical heterogeneity at the

single-cell level, we collected linked mass, MAR and
gene expression measurements for single BT159 cells
that had either been treated for 16 h with RG7388 or
DMSO (control) (Methods). Overall, the drug-treated
population of cells showed a marked reduction in aver-
age MAR and an increase in average mass as compared
to the control population of cells, as expected from cell
cycle exit and apoptosis (P < 0.001, Mann-Whitney U
test, Fig. 4b). However, there was also considerable
heterogeneity in biophysical response to drug, with

Kimmerling et al. Genome Biology          (2018) 19:207 Page 6 of 13



b c

d e

PDCL Neurosphere Biophysically heterogeneous, 
live single-cell suspension

Drug cells w/
RG7388

MAR Measurement
& scRNAseq

Typical endpoint
viability assays

t = 0hr t = 16hr t = 72hr+

Cell death

Creation of PDCL
from primary GBM

a

20 40 60 80 100

0
2

4
6

Buoyant mass (pg)

M
A

R
 (

pg
/h

)

RG7388

DMSO

20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Buoyant mass (pg)

M
ito

si
s 

sc
or

e

RG7388

DMSO

***

***

***
***

MDM2

C1orf56
YWHAE HNRNPH1

SET HEPN1

CDKN1AEIF2S3

GDF15
PLTP

CHP1

PPP1CB
SOX4

TP53I3

TUBA1B

EIF4A1

SRSF2
TUBA1A

TMSB4X
CKS2

UBC
STMN1

TUBB2A

HMGN2

0

5

10

15

20

25

−2 0 2

Scaled Fold−Difference

−
lo

g(
p−

va
lu

e)

Correlation with 
normalized MAR

Positive
NegativePhospholipases

NRF2-mediated Oxidative 
Stress Response

Wnt/Ca+ pathway

Apoptosis Signaling

EIF2 Signaling

Adrenomedullin signaling pathway

PI3K Signaling in B Lymphocytes

Endometrial Cancer Signaling

mTOR Signaling

−2 −1 0 1 2

z-score

IPA of RG7388 Treated Cells

Fig. 4 Characterizing single-cell drug response in BT159 GBM cells. a Schematic representation of GBM PDCL generation, drug treatment in vitro,
and subsequent characterization of therapeutic response using the sSMR collection platform. Mass and growth measurements are collected after
16 h of treatment, prior to loss of cell viability, which enables downstream molecular characterization with scRNA-seq (Methods). b Plot of single-
cell MAR versus mass for BT159 GBM cells treated with either DMSO (blue circles, n = 83) or RG7388 (an MDM2 inhibitor, red triangles, n = 66) for
16 h. Kernel density plots, using the same color scheme, are included in the margins for both populations. ***P < 0.001, Mann-Whitney U test. c
Volcano plot showing log-transformed average expression fold change and log-transformed P-values (Bonferroni corrected) for genes upregulated
(red) or downregulated (blue) in BT159 cells treated with RG7388 as compared with DMSO treatment. d Plot of mitosis scores versus buoyant mass for
BT159 cells treated with DMSO (blue circles, n = 83) or RG7388 (red triangles, n = 66) for 16 h. Mitosis scores were calculated by taking the average z-
score adjusted gene expression values of a panel of mitosis-related genes (n = 29, Additional file 10: Table S9; Methods). Kernel density plots, using the
same color scheme, are included in the margins for both populations. ***P < 0.001, Mann-Whitney U test. e Plot of significantly enriched canonical
pathways (FDR < 0.05) in RG7388-treated BT159 cells (n = 66), as determined by ingenuity pathway analysis, among genes with significant positive
(black) or negative (gray) correlations with normalized MAR. (Additional file 1: Figure S4, Additional file 11: Table S10, Methods)

Kimmerling et al. Genome Biology          (2018) 19:207 Page 7 of 13



some cells continuing to show a positive MAR at the
time of measurement (Additional file 1: Figure S8).
Since these measurements were collected at a single
time point, it is difficult to assess whether the cells that
continue to grow in the presence of drug are, in fact,
resistant to therapy or simply display a delayed re-
sponse to treatment. Nonetheless, the biophysical het-
erogeneity found in these results affords the
opportunity to determine transcriptional signatures
that correlate with this variability at this particular
time point.
We next considered only the transcriptional data. As

expected, an unbiased analysis (dimensionality reduction
by principal components analysis (PCA) and visualization
using a t-stochastic neighbor-embedding (tSNE) plot,
Methods) revealed distinct transcriptional profiles for
drug-treated and control cell populations (Additional file 1:
Figure S9a). Relative to DMSO-treated cells, drug-treated
cells displayed gene expression signatures consistent with
the mechanism of MDM2 inhibition, with genes posi-
tively regulated by p53, such as CDK1NA (p21) and
MDM2, showing significant upregulation, and genes
negatively regulated by p53, such as CDK1 and CDC20,
showing significant downregulation (Bonferroni-corrected
P < 0.05, Fig. 4c, Additional file 9: Table S8) [41]. We then
performed dimensionality reduction (PCA) and graph-
based clustering (k-nearest neighbors, KNN) on the tran-
scriptional data from the drug-treated cells alone and vi-
sualized our results using a tSNE plot (Additional file 1:
Figure S9b; Methods). This clustering analysis did not re-
veal any clear subsets of drug-treated cells with distinctly
different responses to MDM2 inhibition.
Since our transcriptional measurements suggested

that all MDM2-inhibitor treated cells were actively ex-
periencing drug but our biophysical measurements re-
vealed mass and MAR heterogeneity, we decided to
explicitly examine whether the linked nature of our
measurements could be used to shed light on the
drivers of biophysical variability at this time point after
treatment with DMSO or RG7388. When examining
linked measurements of gene expression and cell mass
in DMSO treated cells, we found that genes ranked by
correlation strength with mass were highly enriched
for functional annotations relating to cell cycle pro-
gression (Additional file 2: Tables S1, Additional file 3:
Table S2). Also, as with the other cell types presented
here, larger cells in the control population expressed a
higher level of genes associated with late cell cycle
events, specifically mitosis (Fig. 4d, Additional file 10:
Table S9). Interestingly, an unsupervised clustering
analysis (PCA followed by KNN clustering, Methods)
of the DMSO-treated cells alone revealed two distinct
subsets which had significantly different average masses
(P < 0.01, Mann-Whitney U test, Additional file 1:

Figure S9c,d), and an upregulation of genes relating
to cell cycle progression in the subset with a larger
average mass (Additional file 1: Figure S9e).
MDM2 inhibitor-treated cells, meanwhile, showed

significantly reduced expression of mitosis-specific
genes (P < 0.001, Mann-Whitney U test, Fig. 4d). More-
over, in these cells, we did not observe any significant
cell cycle-related functional enrichments among those
genes correlated with cell mass (FDR > 0.05). These re-
sults demonstrate that upon MDM2 inhibition and
stabilization of p53 signaling in these cells, cell cycle ar-
rest is achieved as expected but there is no longer a
correlation between cell mass and cell cycle-related
gene expression (ρ = 0.47, P < 0.001 for DMSO-treated
cells; ρ = − 0.07, P = 0.54 for drug-treated cells).
Furthermore, since a subset of cells within the drug-
treated population displayed a positive MAR despite
ablated cell cycle gene expression (Fig. 4b), our data
suggest that cell cycle gene expression alone does not
fully account for variability in the single-cell biophysical
response. In fact, we did not observe a significant cor-
relation between PCs computed for the drug-treated
single-cell transcriptomes and any biophysical proper-
ties measured (P > 0.05; Methods).
To determine transcriptional signatures that may under-

lie this biophysical heterogeneity, we utilized the corre-
sponding single-cell MAR data to further contextualize
gene expression. Genes ranked by correlation strength
with mass-normalized MAR in the MDM2 inhibitor-
treated population of cells showed a significant negative
enrichment (i.e., higher expression in cells accumulating
less mass over time) for functional annotations related to
apoptosis regulation, specifically related to p53 signaling
(FDR < 0.05, Additional file 2: Table S1, Additional file 3:
Table S2). The DMSO-treated population of cells, mean-
while, did not show any significant functional enrichments
among genes ranked by correlation with normalized-MAR
(FDR > 0.05, Additional file 2: Table S1, Additional file 3:
Table S2). Similarly, ingenuity pathway analysis (IPA,
Qiagen) performed on drug-treated cells revealed signifi-
cant enrichment of canonical apoptosis signaling among
genes showing significant negative correlations with nor-
malized MAR (FDR < 0.05, Fig. 4e) while the same analysis
on DMSO-treated cells did not reveal any apoptosis-re-
lated signaling significantly correlated with MAR (FDR >
0.05, Additional file 1: Figure S10, Additional file 11: S10).
Together, these results suggest that cells with a higher
normalized MAR had a lower expression of genes related
to apoptotic signaling orchestrated by p53, but only in
drug treated cells, consistent with the mechanisms of
MDM2. IPA of drug-treated cells further revealed partial
enrichment (FDR = 0.09) for PTEN signaling (a negative
regulator of AKT) and significant enrichment (FDR <
0.05) for mTOR signaling (a positive regulator of AKT)
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among genes significantly negatively and positively
correlated with normalized MAR, respectively [42, 43].
IPA of DMSO treated cells, however, did not reveal
significant enrichment for mTOR or PTEN signaling
(FDR > 0.1) in genes correlated with normalized MAR
(Additional file 1: Figure S10, Additional file 11: Table
S10). Together, these results suggest that cells which
continue to grow in the presence of MDM2 inhibition
may exhibit more stable AKT signaling, which itself
drives MDM2 expression, as compared with cells with
decreased normalized MAR, pointing to a potential
mechanism of cell survival in the presence of treat-
ment [44, 45]. Though preliminary, these results
demonstrate the unique insights offered by linked
measurements of biophysical phenotype and gene ex-
pression when examining cancer cell drug response at
the single-cell level.

Conclusion
The platform presented here enables linked measure-
ments of single-cell biophysical properties and gene
expression. Having demonstrated the resolution and
reproducibility of these linked data sets with measure-
ments of stable cell lines (L1210 and FL5.12 cells), we
present frameworks for two key applications of these
linked data sets (i) characterizing immune cell activa-
tion and differentiation and (ii) examining cancer cell
drug response at the single-cell level.
While the primary focus of this work was on con-

ducting scRNA-seq downstream of the sSMR, we also
envision this platform being a useful tool for linking
biophysical data with other recently developed ap-
proaches that enable DNA sequencing, epigenomic
characterization, or multi-omic measurements of sin-
gle cells [6, 7, 46].
We believe that these linked measurements will offer

a novel means of exploring a range of biological
questions. For instance, when paired with recently de-
veloped computational approaches, these linked bio-
physical and transcriptional measurements may offer
insights into cell cycle regulation as well as provide an
additional approach for addressing the potentially con-
founding effects of cell cycle in scRNA-seq analyses
[23]. Clinically, mass and MAR have proven to be ef-
fective biomarkers for characterizing cancer cell drug
susceptibility at the single-cell level [18, 26]. The abil-
ity to link these biophysical measurements with gene
expression or genetic profiling offers the exciting op-
portunity to move beyond the simple classification of
responding and non-responding cells and to begin to
explore the molecular mechanisms that may drive
such behaviors. We envision that this and related ap-
proaches may one day inform more effective precision
medicine pipelines [47].

Methods
Cell culture and primary cell preparation
L1210 murine lymphocytic leukemia cells (ECACC) were
cultured in RPMI 1640 (Gibco) with 10% fetal bovine
serum and 1% antibiotic-antimycotic (Gibco). FL5.12 mur-
ine pre-B cells (gift from the Vander Heiden Lab, MIT)
were cultured in the same media with the addition of
10 ng/ml IL-3 (R&D Systems). For all growth and collec-
tion experiments, cells were passaged to a concentration
of 5 × 105 cells/ml the night before to ensure consistent
culture confluence at time of measurement.
Naïve CD8+ T cells were isolated from a 13 week old,

male, C57BL/6 J mouse. Splenocytes were subject to red
blood cell lysis with ACK buffer (Gibco) followed by
naïve CD8+ T cell isolation using a MACS-based isola-
tion kit (Miltenyi Biotec). Purified cells were cultured in
RPMI 1640 (Gibco) with 10% fetal bovine serum, 55 μM
2-mercaptoethanol (Gibco), 1% antibiotic-antimycotic
(Gibco) and 100 U/ml IL2 (Peprotech). The naïve CD8+
T cells were activated in vitro with 5 μg/ml plate-bound
anti-mouse CD3 (clone: 145-2c11, BioLegend), 0.5 μg/ml
plate-bound ICAM-1/CD54 (R&D Systems), and 2 μg/
ml soluble anti-mouse CD28 (clone: 37.51, BioLegend).
Cells were seeded at a concentration of 1 × 106 cells/ml
in a 96 well plate and activated for either 24 or 48 h
prior to measurement in the sSMR.
Primary GBM cells used to generate the BT159 line

were harvested from excess tissue resection specimens
through cycles of enzymatic (neural tissue dissociation
kit with papain, Miltenyi Biotec) and mechanical dis-
sociation in a tissue grinder (gentleMACS dissociator,
Miltenyi Biotec). Cells were grown as tumorspheres in
NeuroCult NS-A proliferation media (Miltenyi Biotec)
supplemented with 2 μg/ml Heparin, 20 ng/ml human
epidermal growth factor (EGF), 10 ng/ml human bFGF
in ultra-low attachment coated flasks (Corning). Prior
to measurement, the BT159 cells were dissociated with
Accutase (Sigma-Aldrich) at 37 °C for 7 min. For drug
experiments, cells were treated with 250 nM of the
MDM2 inhibitor RG7388 (Roche) or DMSO for 16 h
prior to dissociation for measurement.

Single-cell growth measurements and collection
For all experiments, cells were adjusted to a final concen-
tration of 2.5 × 105 cells/ml to load single cells into the
mass sensor array as described in Additional file 1: Note
S1. Single-cell growth measurements were conducted as
described previously [17]. In order to exchange buffer and
flush individual cells from the system, the release side of
the device was constantly flushed with PBS at a rate of
15 μL per minute (Additional file 1: Figure S1, P2 to P4).
Upon detection of a single-cell at the final cantilever of
the sSMR, as indicated by a supra-threshold shift in reson-
ant frequency, a set of three-dimensional motorized stages
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(ThorLabs) was triggered to move a custom PCR-tube
strip mount from a waste collection position to a sample
collection position. The location of these motors was writ-
ten to a file for the duration of the experiment in order to
annotate single-cell mass and MAR measurements with
well position, and thus transcriptional profiles, down-
stream. Each cell was collected in 5 μl of PBS directly in
to a PCR tube containing 5 μl of 2× TCL lysis buffer
(Qiagen) with 2% v/v 2-mercaptoethanol (Sigma) for a
total final reaction volume of 10 μl. After each 8-tube
PCR strip was filled with cells, the strip was spun
down at 1000 g for 30 s and placed immediately on dry
ice. Following collection, samples were stored at − 80
C prior to library preparation and sequencing.

scRNA-seq
Single-cell RNA isolation, cDNA library synthesis, next
generation sequencing, read alignment and gene ex-
pression estimation were performed as described pre-
viously [48]. Briefly, Smart-Seq2 whole transcriptome
amplification and library preparation were performed
on single-cell lysates collected with the sSMR [49].
Single-cell libraries were then sequenced on an Illu-
mina NextSeq 500 using 30-bp paired end reads. Data
was initially filtered to exclude cell doublets or cells
with failed matching of masses for growth rate meas-
urement. This step left 87 out of 96 total L1210 cells,
144 out of 192 total FL5.12 cells, 178 out of 192 total
CD8+ T cells, and 181 out of 192 total BT159 GBM
cells. Next, cells that exceeded a preliminary complex-
ity threshold (4000 genes for L1210 and FL5.12 cells,
2000 genes for CD8+ T cells, or 1000 genes for BT159
cells) were selected for further analysis. Overall, this
yielded 85 out of 87 total L1210 cells, 124 out of 144
total FL5.12 cells, 108 out of 178 total CD8+ T cells,
and 149 out of 192 total BT159 cells. These cells se-
lected for analysis were sequenced to an average depth
of 1,698,879 + 106,027 (s.e.m.) reads for L1210 cells,
760,919 + 36,679 (s.e.m.) reads for FL5.12 cells,
1,333,686 + 90,744 (s.e.m.) reads for CD8+ T cells, and
993,629 + 75,796 (s.e.m.) reads for BT159 cells respect-
ively. Reads were aligned using TopHat2 and expres-
sion estimates (transcripts per million; TPM) for all
UCSC-annotated mouse genes (mm10, for L1210,
FL5.12, and CD8+ T cells) or human genes (hg19, for
BT159 cells) were calculated using RNA-seq by expect-
ation maximization (RSEM) [50, 51]. The average tran-
scriptome alignments were 67.4 + 0.38% (s.e.m.) for
L1210 cells, 64.8+ 0.51% (s.e.m.) for FL5.12 cells,
57.3 + 1.36% (s.e.m.) for CD8+ T cells, and
35.2 + 0.84% (s.e.m.) for BT159 cells. The average
number of genes detected was 7,207 + 94 (s.e.m.) for
L1210 cells, 6,891 + 81 (s.e.m.) for FL5.12 cells,

5,149 + 159 (s.e.m.) for CD8+ T cells, and 5,347 + 173
(s.e.m.) for BT159 cells (Additional file 1: Figure S2).

Gene expression analysis
All analysis was performed on log-transformed expression
level measurements (ln(TPM+ 1)). Data pre-processing
was conducted with the Seurat package for R [10]. All
genes that were detected in > 5% of cells were included in
the final analysis for each group of cells (L1210, FL5.12,
CD8+ T cells, and BT159 GBM cells).

Significance-testing
To define the null distribution of correlation coeffi-
cients described in Fig. 3, we determined the Spearman
correlation between cell cycle gene expression levels
and mass for randomly shuffled data sampled from the
experimental values (i.e., mismatching single-cell mass
and gene expression data). After 10,000 iterations, we
used the average mean and standard deviation values
of these correlation coefficient distributions to define
the null distributions presented.
We computed the null distributions for the correl-

ation coefficients between either mass, MAR, or nor-
malized MAR and the principal components for either
the DMSO-treated, drug-treated, or combined tran-
scriptomic data sets using a similar random shuffling of
PC coordinates across single-cells. Following 10,000
iterations, the mean and standard deviation of these
distributions were compared to the correlation of each
biophysical parameter with all significant principal
components (PCs). For each data set, the PCElbow plot
and jackstraw functions in Seurat were used to select
significant PCs whose explained variation preceded a
precipitous drop in cumulative explained variation
(elbow). In each data set, for consistency, the top 10
PCs were investigated, although in some cases fewer
than 10 PCs preceded the elbow. Correlation coeffi-
cients were deemed insignificant if they were within
two standard deviations of the mean determined from
random shuffling.

Gene set enrichment analysis
Ranked gene lists were created for each cell population
by determining the gene-wise correlation coefficient
(Spearman) between log-transformed gene expression
levels and either single-cell mass or growth efficiency
(MAR/mass; Additional file 2: Table S1). Spearman and
Pearson correlation coefficients yielded similar results
for all conditions measured (Additional file 1: Figure
S4). Gene set enrichment was computed for these
ranked lists using the GSEA Preranked tool, imple-
mented with the fgsea package in R (Additional file 3:
Table S2) [21, 52].
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Differential expression
Differential expression analysis for the 24 versus 48 h
CD8+ T cell measurements, as well as the DMSO ver-
sus RG7388 treated BT159 cells, was performed using
the FindMarkers function of Seurat with the Wilcoxon
rank sum test (Additional file 6: Table S5, Add-
itional file 9: Table S8). For the CD8+ T cells, genes
were also ranked by log-normalized fold-change ex-
pression difference between the 24 and 48 h time
points and analyzed with the GSEA Preranked tool
(Additional file 7: Table S6, Additional file 6: Table S5).
All P values presented are Bonferroni corrected, as per
Seurat documentation recommendation.

Dimensionality reduction
Variable genes for the DMSO-treated, drug-treated,
and combined data sets were identified using Seurat’s
FindVaribleGenes. Principal components analysis (PCA)
was performed over these genes for each of the three sets
of cells, followed by non-linear dimensionality reduction
by t-stochastic neighbor embedding (tSNE). Clusters were
identified in the linear PC space using K-nearest neighbor
(KNN) clustering, and cluster assignments were visualized
on the non-linear tSNE space. For the DMSO-treated
cells, we detected two distinct clusters (Additional file 1:
Figure S9c); for the RG7388 treated cells, we only detected
one (Additional file 1: Figure S9b).

Ingenuity pathway analysis
Ingenuity pathway analysis (IPA, Qiagen) was per-
formed on canonical pathways using genes which sig-
nificantly correlated positively and negatively with
normalized MAR (Additional file 1: Figure S4). Briefly,
correlation and P values for significant genes were
uploaded into IPA and analyzed using the “Core Ana-
lysis” function. Correlations were input as “Expression:
Other” measurements with range from -INF to INF.
Significant canonical pathways and upstream regula-
tors (determined by hypergeometric test) with positive
and negative z-scores are plotted in Fig. 4e.

Additional files

Additional file 1: Supplementary figures and notes. (PDF 14878 kb)

Additional file 2: Table S1. Gene lists ranked by correlation with either
mass or mass-normalized MAR for L1210, FL5.12, CD8+ T cells (24 and
48 h activations), and BT159 GBM cells (DMSO and RG7388 treated) with
corresponding Spearman correlation coefficients. Genes that are either
significantly positively or negatively correlated with the biophysical
measurement of interest (as described in Additional file 1: Figure S4)
are highlighted in red. (XLSX 3597 kb)

Additional file 3: Table S2. Gene set enrichment reports for all the
ranked gene lists presented in Additional file 2: Table S1. Enrichments
were generated using the fgsea tool in R. Only gene sets with a false
discovery rate (FDR) value less than 0.1 are included. (XLSX 88 kb)

Additional file 4: Table S3. Cell cycle genes significantly correlated
with cell mass for L1210 and FL5.12. Genes from the “chromosome
segregation” gene ontology term that had a significant positive
correlation with cell mass (n = 58 and 31 genes for L1210 and FL5.12
cells, respectively) and genes from the “DNA replication” gene ontology
term with a significant negative correlation with cell mass (n = 11 and 8
genes for L1210 and FL5.12 cells, respectively) were used to construct the
lists for each cell type. Significance was determined as described in
Additional file 1: Figure S4. (XLSX 9 kb)

Additional file 5: Table S4. List of G1S related genes correlating with
normalized growth rate in FL5.12 cells. Genes from the “cell cycle G1 S
phase transition” gene ontology term that showed a significant positive
correlation with normalized growth rate in FL5.12 cells (n = 13 genes, as
described in Additional file 1: Figure S7) were used to construct this gene
list. (XLSX 8 kb)

Additional file 6: Table S5. List of significantly differentially expressed
genes between the 24 and 48 h time points for the activated CD8+ T
cells with corresponding Bonferroni-corrected P values and log-
normalized fold change values. Negative values indicate genes expressed
at a higher level in the 48 h time point. (XLSX 24 kb)

Additional file 7: Table S6. CD8+ T cell gene list ranked by log-
normalized fold change in gene expression between the 24 and 48 h
activation time points. Negative values indicate genes expressed at a
higher level in the 48 h time point. (XLSX 43 kb)

Additional file 8: Table S7. Gene set enrichment report for the ranked
gene list presented in Additional file 7: Table S6. Enrichments were
generated using the fgsea tool in R. Only gene sets with a false discovery
rate (FDR) value less than 0.1 are included. (XLSX 17 kb)

Additional file 9: Table S8. List of significantly differentially expressed
genes between the DMSO and RG7388 treated BT159 GBM cells with
corresponding Bonferroni-corrected P values and log-normalized fold
change values. Negative values indicate genes that were expressed at a
higher level in the DMSO treated cells. (XLSX 451 kb)

Additional file 10: Table S9. List of mitosis related genes correlating
with mass in DMSO treated BT159 GBM cells. Genes from the “mitosis”
gene ontology term that showed a significant positive correlation with
cell mass in the DMSO treated BT159 GBM cells (n = 29 genes, as
described in Additional file 1: Figure S4) were used to construct this gene
list. (XLSX 8 kb)

Additional file 11: Table S10. Table of ingenuity pathway analysis (IPA)
results for canonical pathway analysis of genes significantly positively or
negatively correlated with normalized MAR in RG7388 or DMSO treated
BT159 cells (Additional file 1: Figure S4, Fig. 4, Additional file 1: Figure
S10, Methods). The table includes all pathways with an FDR < 0.1.
(XLSX 20 kb)
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