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A microfluidic platform enabling single-cell
RNA-seq of multigenerational lineages
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We introduce a microfluidic platform that enables off-chip single-cell RNA-seq after

multi-generational lineage tracking under controlled culture conditions. We use this platform

to generate whole-transcriptome profiles of primary, activated murine CD8þ T-cell and

lymphocytic leukemia cell line lineages. Here we report that both cell types have greater

intra- than inter-lineage transcriptional similarity. For CD8þ T-cells, genes with functional

annotation relating to lymphocyte differentiation and function—including Granzyme B—are

enriched among the genes that demonstrate greater intra-lineage expression level similarity.

Analysis of gene expression covariance with matched measurements of time since division

reveals cell type-specific transcriptional signatures that correspond with cell cycle

progression. We believe that the ability to directly measure the effects of lineage and cell

cycle-dependent transcriptional profiles of single cells will be broadly useful to fields where

heterogeneous populations of cells display distinct clonal trajectories, including immunology,

cancer, and developmental biology.
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T
he development of single-cell RNA-seq has led to a new
degree of resolution in the characterization of complex,
heterogeneous biological systems1. Complimentary

technical advances in single-cell isolation using micro-
manipulation, microfluidics and fluorescence activated
cell sorting have further enabled the coupling of traditional
measurements of cellular phenotype, such as immuno-
fluorescence staining and optical microscopy, with
transcriptional profiles2. Together, these approaches have
provided crucial insights into the transcriptional heterogeneity
of cancer3, immune4 and pluripotent stem cells5.

Because these single-cell isolation platforms rely on single time
point measurements, they provide only an instantaneous
snapshot of cellular phenotype to link to a transcriptional
signature. In addition to understanding the transcriptional
heterogeneity within a population of cells, the mechanisms for
generating this heterogeneity over time are also of critical
importance. For instance, a cornerstone of adaptive immunity
is the ability of single T-lymphocytes to generate diverse progeny
that can both acutely respond to a specific antigen and provide
long-term protection in the event of a future exposure. However,
the mechanism by which this diversity is generated from a single
founding cell remains a highly controversial topic6–9. Resolving
the relative contributions of various models of T-cell
differentiation—as well as generally defining the mechanisms by
which a single cell gives rise to distinctly different progeny in
various biological systems—requires a means of directly tracking
single-cell lineage while making sensitive measurements of cell
phenotype.

Recent developments in microfluidic technology have enabled
new methods of capturing and culturing single cells10,11.
When coupled with traditional imaging approaches, these
systems offer a robust means of following cellular trajectories
over time, but require experimental platforms that can
reliably link these measurements to downstream single-cell gene
expression profiles12,13. Alternatively, microfluidic devices which
enable the efficient preparation of single-cell cDNA libraries
for gene expression analysis—such as the Fluidigm C1
platform—currently lack the long-term culture, progeny capture
and time-lapse imaging capabilities necessary to link these
transcriptional measurements with lineage information.

Here, we present a microfluidic platform that allows direct
association of these complementary data sets by enabling
registered off-chip single-cell RNA-seq after multi-generational
lineage tracking. We utilize this platform to collect single-cell
transcriptional measurements for lineages of two well-studied
model cell types: a mouse lymphocytic leukemia cell line (L1210)
and primary murine CD8þ T-cells. These results reveal both
lineage and cell cycle-dependent transcriptional signatures, and
suggest that this platform may be broadly useful for studies of
multigenerational development at the single cell level.

Results
Hydrodynamic trap array. Our platform utilizes an array of
hydrodynamic traps within a fluidic design optimized to capture
and culture single cells for multiple generations on-chip (Fig. 1a).
These trap structures rely on differences in hydrodynamic
resistance between the trapping pocket and a bypassing
serpentine channel to deterministically capture single cells
(Supplementary Fig. 1a)10. To increase the throughput of the
system, groups of traps are arranged as independently accessible
lanes with bypass channels flanking either side. The application of
independent upstream and downstream pressures (P1, P2 and
P3) drives fluid flow through the device. By establishing unique
pressure gradients along (P1–P2 and P1–P3) and across (P2–P3)

the bypass channels, this fluidic design decouples the flow
through the bypass channels from the flow across each lane of
traps (Supplementary Fig. 2). As such, media can be rapidly and
continuously perfused through the bypass channels while
maintaining minimal flow across the traps in order to ensure
constant nutrient repletion with low and uniform shear stress
on the cells (Supplementary Fig. 1b). This independent flow
control also allows for rapid buffer exchange without dislodging
trapped cells, thus enabling on-chip implementation of standard
cell staining techniques such as immunocytochemistry and
fluorescent labelling.

For experimental operation, a single cell is loaded into each
lane of the trap array (Methods, Supplementary Movie 1 and
Supplementary Note 1). As the cell proliferates, its progeny are
carried downstream and captured in subsequent unoccupied
traps (Supplementary Movie 2). Time-lapse imaging of this
process allows for the determination of single-cell proliferation
kinetics and identification of lineal relationships between cells
(Fig. 1b,c). Each lane of traps can accommodate up to 40 cells and
thus enables lineage tracking for up to five generations (with an
experimental duration determined by the doubling time of the
cells under study). Our system is capable of sustaining cell growth
over more than 72 h for both a murine lymphocytic leukemia cell
line (L1210) and primary murine CD8þ T-cells, matching or
surpassing time scales achievable with state-of-the-art methods
for long-term culture of single suspension cells12,14. Furthermore,
growth kinetics in the device are stable over multiple generations
and consistent with doubling time measurements collected from
bulk cultures, suggesting that the platform does not significantly
perturb long-term cell growth (Fig. 1b, Supplementary Fig. 3).

Single-cell release. In contrast to previous approaches, our fluidic
design enables the retrieval of single cells after multiple
generations of proliferation for downstream assays, thereby
allowing single-cell transcriptomic data to be linked to lineage,
proliferation kinetics and live-cell image data. Cells are retrieved
by reversing the pressure differential across the trap lanes to
collect cells in the bypass channel where they can be flushed out
of the chip in o5 ml of buffer (Supplementary Movie 3,
Supplementary Note 1). The parallel lanes of traps each have a
slightly different applied pressure (P3) at which the flow direction
changes and cells begin to exit (Supplementary Movie 4); this
difference enables independent release of cells from each lane and
increases the throughput of the system (Supplementary Note 1).

Using this retrieval method, single cells from lineages of
L1210 and CD8þ T-cells were captured off-chip for single-cell
RNA-seq15. Videos documenting this release process allow us to
couple transcriptional profiles with lineal relationships and
measurements of time since division for each cell. In contrast,
previous approaches have relied on computational analysis of
single-cell transcriptional profiles to construct putative lineal
relationships6. This platform, however, enables direct observation
of familial history upstream of single-cell RNA-seq and presents a
direct means of determining lineage-dependent transcriptional
characteristics.

Lineage-dependent transcriptional profiles. Single cells were
cultured for two generations on-chip before release for
sequencing. This allowed us to define sister and cousin cell pairs
for each lineage (Fig. 1c). To determine transcriptional patterns
associated with lineage relationships in these cell systems, we
compared gene expression similarity between related (that is,
sisters and cousins) and unrelated cell pairs. Here, unrelated cell
pairs refer to cells that were not derived from a common ancestor
as observed in the device (that is, from different lineages).
Transcriptional similarities were determined using Euclidean
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distance measurements to quantify the distance between two cells
in log-transformed transcriptional space with smaller distances
signifying more similar gene expression profiles (Methods).
When comparing global expression levels in both cell types, sister
cell pairs showed significantly higher transcriptional similarity
than unrelated cell pairs (P¼ 0.03 and Po0.001 for L1210 and
CD8þ T-cells, respectively, Mann–Whitney U-test) (Fig. 2a). For
CD8þ T-cells, this increased similarity also extended to cousin
cell pairs (Po0.001, Mann–Whitney U-test). Since each founding
CD8þ T-cell loaded in to the device represents a unique clone,
these results suggest lower intra- than interclonal transcriptional
variation for these cells (Fig. 2a–c). Conducting these analyses
with Spearman distances, a rank-based metric of transcriptional
similarity, yielded similar results across all comparisons
(Supplementary Fig. 4). Interestingly, unsupervised clustering
analysis of highly variable genes in both cell types successfully
reconstructs lineage relationships for some, but not all, cells
(Supplementary Fig. 5, Supplementary Note 2). This suggests that
computational approaches alone may not offer the same efficacy
in predicting single-cell lineage relationships as direct observation
of cellular division does.

The effects of lineage and clonality in T-cells are of particular
interest in the context of effector cell function and differentiation
in response to antigenic stimuli7,16. When performing the
aforementioned analysis on a subset of genes with functional
relevance to CD8þ T-cell activation, differentiation and
cytotoxic function, there was once again significantly greater
intraclonal transcriptional similarity (Po0.001, Mann–Whitney
U-test) (Fig. 2c, Supplementary Data 3). Transcriptional
similarity among the progeny of a single clone did not

appear to be driven by gene expression signatures associated
with pre-existing subsets of memory and effector CD8þ T cell
phenotypes (Supplementary Fig. 6; Supplementary Note 3).
In addition to these aggregate measurements, we compared
intra- and interclonal similarity at the single gene level. The genes
that showed significantly more intra- than interclonal similarity
were highly enriched for gene ontology annotations relating
to T-cell activation and immune cell function (Po0.001,
modified Fisher Exact test Supplementary Data 4). Interestingly,
gene expression for Granzyme B (Gzmb)—whose protein
product plays a key role in cytotoxic T-cell-mediated target cell
killing—showed one of the highest levels of clonal similarity,
with strong correlations in Gzmb expression levels between
sisters (R2¼ 0.524, n¼ 43) and cousins (R2¼ 0.517, n¼ 73) as
compared with unrelated cells (R2¼ 0.002, n¼ 4,544) (Fig. 2d).
At the intraclonal level for CD8þ T-cells, genes which showed
stronger correlation between sister cells than between cousin cells
were also enriched for gene ontology terms relating to T-cell
activation and immune cell function (Po0.05; modified Fisher
Exact test Supplementary Fig. 7, Supplementary Data 5). A
similar analysis in L1210 cells, which do not require activation
and are not actively differentiating, demonstrated that genes with
expression levels more correlated in sister cells were
instead enriched for basic biological function annotations
including cell metabolism and biosynthetic processes. To our
knowledge, these measurements offer the first direct comparison
of inter- and intraclonal variability in activated CD8þ T-cells
with a priori knowledge of lineage relationships and, when taken
together, suggest lineage-dependent transcriptional signatures
corresponding to unique functional phenotypes.
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Figure 1 | Microfluidic hydrodynamic trap array for single-cell lineage tracking. (a) Schematic representation of the hydrodynamic trap array consisting

of 20 lanes of traps (inset shows an optical micrograph of a single trapped cell—scale bar, 20mm). Independent control of upstream (P1) and downstream

(P2, P3) pressures enables continuous perfusion for long-term proliferation (Supplementary Movie 2), as well as single cell release from the device

(Supplementary Movie 3, Supplementary Note 1). (b) Single-cell interdivisionary time measurements for a murine leukemia cell line (L1210, n¼ 526) and

primary CD8þ T-cells isolated from C57BL/6J mice (CD8þ , n¼418) collected with the hydrodynamic trap array. Overlaid black bars indicate the mean

interdivisionary time measured on-chip (left) and the doubling time measurements collected for bulk cultures (right) of each cell type (Supplementary

Fig. 3b). (c) Overlay of lineage trees from single CD8þ T cells (n¼ 15) and L1210 cells (n¼ 20) established with time-lapse imaging in the hydrodynamic

trap array. As a demonstration of lineage construction, one lineage for each cell type (black circles) has connecting lines indicating familial history. The first

division observed in the device corresponds to time zero for each lineage with subsequent points corresponding to the second (blue circles) and third

(green circles) divisions on-chip. The inset demonstrates how sister and cousin cell pairs are defined for cell lineages released for sequencing.
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Cell cycle-dependent transcription. Recent work has demon-
strated that cell cycle-dependent transcriptional profiles in single-
cell RNA-seq measurements may obfuscate underlying pheno-
typic relationships between cells17. Therefore, we sought to
determine whether the observed intraclonal transcriptional
similarities were primarily the result of cell cycle stage
proximity or lineage relationship. When released from the
device, cells derived from a single clone are inherently at
similar cell cycle stages by virtue of originating from common
division events. Unrelated cell pairs, however, are drawn from
various lineages and have, on an average, a greater difference in
cell cycle proximity. Direct observation of proliferation in the
device allow us to account for this confounding effect by
independently determining the time since division, an
approximate measurement of cell cycle progression, for each
cell analysed. Differences in time since division for unrelated cell
pairs were then used as a proxy for the extent to which cell cycle
stage differed for each of the transcriptional similarity
measurements.

Comparison of unrelated L1210 and CD8þ T-cells
demonstrated that cell pairs with smaller differences in times
since division were significantly more transcriptionally similar
(Po0.001, Mann–Whitney U-test, Supplementary Fig. 8). For

CD8þ T-cells, this effect was even more pronounced when
considering a subset of genes with cell cycle-related functional
annotation (Po0.001, Mann–Whitney U-test) (Fig. 2b,
Supplementary Fig. 8b). Similarly, in L1210 cells, genes which
showed greater expression level similarity among related cells as
compared with unrelated cells were enriched for cell cycle
associated gene ontology terms (Supplementary Data 4). These
results suggest that global transcriptional similarity for related
L1210 and CD8þ T-cells is at least partially due to cell cycle
stage proximity and not entirely governed by lineage
relationships. However, this dependence on cell cycle stage was
less pronounced for a subset of genes in CD8þ T-cells with
functional annotations relating to T-cell activation and function
(Fig. 2c, Supplementary Fig. 8c). Expression levels of these
genes—including Gzmb—showed a strong correlation between
related cells but no correlation with time since division
(P¼ 0.005, Fisher’s z transformation, Fig. 2d,e). Furthermore,
when limiting the transcriptional similarity analysis to include
only unrelated cell pairs that have similar cell cycle stages, sister
and cousin cell pairs still demonstrate greater transcriptional
similarity (Supplementary Fig. 8d–f). These results suggest that
lineage relationships, and not cell cycle stage proximity, are the
dominant factor accounting for the similar expression patterns of
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Figure 2 | Single-cell RNA-seq with known lineage relationships and times since division. (a) Comparison of Euclidean distances (measured in log-

transformed transcripts per million) between sister cells, cousin cells and unrelated cells for CD8þ T-cells (n¼43, 73 and 4,544, respectively) and L1210 cells

(n¼ 37, 60 and 3,064, respectively) for the entire gene set (9,997 genes and 10,658 genes for CD8þ T-cells and L1210, respectively). Groups were compared

with a Mann–Whitney U-test (Methods). The shaded area overlay on the unrelated cell pair measurements has a width corresponding to differences in time

since division for these cells. The widths were constructed using a 250-point moving average of the pairwise differences in time since division for visual clarity.

Scale bar, 3 h. (b) Same analysis as in (a) applied to a subset of genes with cell cycle-related gene annotations (688 genes total) for CD8þ T-cells. (c) Same

analysis as in a,b applied to a subset of genes with gene annotations related to T-cell activation and function (142 genes total) for CD8þ T-cells. (Groups were

compared with a Mann–Whitney U-test. After Bonferroni correction: *Po0.05, **Po0.01, ***Po0.001. Not-significant (NS) indicates a P value 40.05.)

(d) Plot of Granzyme B expression levels (measured in log-transformed transcripts per million) in sister cell pairs (blue circles), cousin cell pairs (red circles)

and unrelated cell pairs (grey scale density plot with darkest regions corresponding to highest relative occupancy). The correlation coefficients of related and

unrelated cell pairs were compared with a Fisher’s z transformation (P¼0.005). (e) Plot of Granzyme B expression levels as a function of the time since

division for each single cell. (f,g) Plot of scores on the first latent variable of partial least squares regression models constructed with expression measurements

as predictor variables and the time since division for each single cell as the response variable for CD8þ T-cells (f) and L1210 cells (g). The final models were

constructed with genes corresponding to the top 300 VIP scores for each cell type (Supplementary Fig. 9, Methods).
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genes relating to T-cell function observed in single CD8þ T-cell
clones.

To further examine cell cycle-dependent transcriptional pat-
terns, we used partial least squares regression (PLSR) models to
find the multivariate, weighted combination of genes—referred to
as the latent variable—that covaried most significantly with single-
cell measurements of time since division (Methods). After initial
model construction with the entire gene set, we limited our
analysis to subsets including the 300 genes that accounted for the
most covariance with time since division for each cell type
(Supplementary Fig. 9, Methods). Reconstructing the models with
these reduced gene lists resulted in strong correlations between the
latent variable scores and experimental measurements of time since
division for both the CD8þ T-cells (R2¼ 0.77±0.03 s.d., n¼ 10
iterations ) and L1210 cells (R2¼ 0.84±0.02 s.d., n¼ 10 iterations)
(Fig. 2f,g). Cross-validation of these models demonstrates that
these transcriptional patterns are not artifactual signatures
associated with variations amongst cells (Methods). Furthermore,
random permutation analysis verifies that the results of each model
were not due to over fitting (Po0.001, Mann–Whitney U-test)
(Methods). Therefore, these transcriptional signatures are able to
explain a majority of the gene expression variability associated with
cell cycle progression. As such, these models could be used to
predict cell cycle stage without prior knowledge of time since
division for these cell types.

For each model, the optimized subsets of 300 genes were highly
enriched for genes with cell cycle-related functional annotations
(Supplementary Data 6). However, there were only 28 genes that
were common to both subsets, indicating that cell cycle
progression transcriptional signatures are different between the
two cell types. This cell-type specificity may be in part due to
dissimilarities in cell cycle regulation between L1210, a consti-
tutively proliferating lymphocytic leukemia, and CD8þ T-cells,
which require activation and growth factor stimulation to induce
proliferation. Furthermore, these results are consistent with
previous work that demonstrated distinct cell cycle signatures
associated with various cell types of hematopoietic origin18.
Altogether, these observations suggest that independent
measurements of cell cycle-associated transcriptional patterns
may be necessary to describe different cell types that have distinct
mechanisms driving cell growth.

Discussion
The platform presented offers the first means of directly linking
single-cell transcriptional profiles with lineage history. We have
demonstrated the utility of these measurements with results
indicating both lineage and cell cycle-dependent gene expression
profiles in two different cell types. While the system is limited to
in vitro studies, it allows for the analysis of single-cell
development and lineage progression under highly controlled,
user-defined culture conditions. Such an approach enables the
study of cell intrinsic developmental patterns that can serve as a
benchmark for measurements of differentiation in vivo, where it
may be difficult to deconvolve the effects of the microenviron-
ment on cellular development. Specifically, this method may shed
light on to the relative contributions of various CD8þ T-cell
differentiation models, which have been difficult to reconcile with
in vivo single-cell measurements alone6,8,9.

Although the trap structures implemented in this device are
most effective for cell populations with a relatively uniform size
distribution, they can be optimized for various average cell sizes
with slight changes to the channel dimensions. Furthermore, the
long-term fluidic stability and cell growth maintenance in this
device make it amenable to use with actively proliferating cells
with a wide range of doubling times. This flexibility in cell

growth and morphology characteristics suggests that this
platform will be broadly applicable to many existing model cell
systems. In combination with recently developed computational
approaches17 and high-throughput single-cell sequencing
methods19,20, this multiplexing of data may allow for more
sensitive analyses of single-cell RNA-seq profiles and help to
distinguish subtle, but meaningful, functional signatures from cell
cycle in various biological contexts.

Methods
Device fabrication and system setup. All devices were fabricated in 6-inch
silicon-on-insulator wafers with 17-mm deep flow channels created with deep
reactive ion etching and an anodically bonded Pyrex lid. Each six inch silicon wafer
yields 100 devices. Fluidic connections were established by securing the devices to a
Teflon manifold with PEEK tubing aligned to the access ports. This manifold was
secured to a copper clamp maintained at 37 �C with a recirculating water bath
(Thermo Scientific). Pressure-driven flow in the device was controlled with
electronic pressure regulators (Proportion Air). All fluids were pressurized with 5%
CO2 (Airgas) to maintain long-term pH stability of the culture medium for cell
growth. Time-lapse imaging was conducted with a custom LabView program
(National Instruments) which drove a TTL-triggered white LED light-source
(ThorLabs) for illumination as well as two automated stages (Newport), which
traversed the x and y axes to capture multiple fields of view for each frame.

Single cell culture. Single cells were manually loaded into the device by intro-
ducing a cell sample at a concentration of 2� 105 cells per ml into the left bypass
channel (Fig. 1, port with pressure P2) and flowing it into the trap lanes (P24P3).
The fluidic design of the system ensures targeted loading of single cells while
avoiding capturing multiple cells in each lane (Supplementary Movie 1,
Supplementary Note 1). For long-term growth and kinetics measurements, a single
cell was loaded in each of the 20 lanes of the device. For the lineage RNA-seq
measurements, one cell was loaded in each of the first eight lanes in order to enable
imaging of all lineages during cell release.

Once a single cell was loaded in each lane, the bypass channels were flushed to
remove any remaining untrapped cells. For continued nutrient repletion, cell
growth media was perfused through the bypass channels at a flow rate of
100 ml h� 1 with a pressure drop applied along the bypass channels (P1–P2 and
P1–P3). A slight pressure drop was concurrently introduced across the traps
(P2–P3) to ensure that the cells remained trapped and their progeny flowed
downstream to unoccupied traps (Supplementary Movie 2).

Single-cell release. After long-term proliferation, the upstream media reservoir
was replaced with phosphate-buffered saline and the bypass channels were flushed.
This exchange was completed within 1 min. Single cells were then retrieved from
the device by briefly reversing the pressure differential across the lanes of traps
(P2–P3). Once a single cell traveled to the bypass channel, the original pressure
differential was reestablished and the cells once again flowed into the traps
(Supplementary Movie 3). During this process, there was a constant pressure drop
maintained along the bypass channels (P1–P2) that allowed each single cell that
entered the bypass channel to be flushed out of the chip. The fluidic design of the
system allowed for the port P2 to be maintained at atmospheric pressure, this
enabled single cells to be collected directly from the tubing connected to the device
(Supplementary Note 1). Furthermore, the design allowed for the release of cells
from individual lanes to collect multiple single-cell lineages with each experiment
(Supplementary Movie 4, Supplementary Note 1). A downstream tubing inner
diameter of 75mm resulted in a dead volume of B2 ml. To accommodate this dead
volume, each cell was released in 5 ml of phosphate-buffered saline. For single-cell
RNA-seq measurements, each cell was released directly in to a PCR tube containing
5 ml of 2� TCL lysis buffer (Qiagen) resulting in a total volume of 10 ml of single-
cell lysate. These samples were immediately frozen on dry ice and subsequently
stored at � 80 �C before library preparation and sequencing.

Single cell RNA-seq. Single-cell RNA isolation, cDNA library synthesis, next-
generation sequencing, read alignment and gene expression estimation were per-
formed as described previously15. Briefly, Smart-Seq2 whole-transcriptome
amplification and library preparation was performed on harvested single cells21.
Single-cell libraries were then sequenced on a NextSeq500 using 30-bp paired end
reads to an average depth of 1,229,637±60,907 reads (s.e.m.), and expression
estimates (transcripts per million; TPM) for all UCSC-annotated mouse genes
(mm10) were calculated using RNA-seq by expectation maximization (RSEM). The
average transcriptomic alignment percentage was 64.3±0.63% (s.e.m.) and the
average number of detected genes was 6,925±170 (s.e.m.) (Supplementary Data 7).

Cell culture and primary cell preparation. L1210 murine lymphocytic leukemia
cells (ATCC CCL219) were cultured in RPMI 1640 (Gibco) with 10% fetal bovine
serum and 1% penicillin-streptomycin solution (Gibco). The L1210 cells used for
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single-cell RNA-seq were from cultures that had been passaged less than 15 times
after the initial thaw of the ATCC aliquot. CD8þ T-cells were isolated from a
mixed gender, C57BL/6J mice ranging in age from 4 to 16 weeks (six mice in total).
After splenocyte isolation and red blood cell lysis with ACK buffer (Gibco), CD8þ
T-cells were purified using a MACS-based CD8a T-cell isolation kit (Miltenyi
Biotec). These cells were cultured in RPMI 1640 (Gibco) with 10% fetal bovine
serum, 55mM 2-mercaptoethanol (Gibco), 1% penicillin-streptomycin solution
(Gibco) and 100 U ml� 1 IL2 (PeproTech). The CD8þ T-cells were activated with
5 mg ml� 1 plate-bound anti-mouse CD3 (clone: 145-2C11, BioLegend catalog
number 100314) and 2 mg ml� 1 of anti-mouse CD28 (clone: 37.51, BioLegend
catalog number 102112) in solution for 30 h before loading in to the device.

Bulk doubling time measurements were determined by fitting an exponential
proliferation model to cell count data collected at various time points with a
Coulter Counter (Beckman Coulter) for cultures of L1210 and activated CD8þ
T-cells.

Animals were cared for in accordance with federal, state and local guidelines
following a protocol approved by the Department of Comparative Medicine
at MIT.

Image analysis. Lineage relationships and time-since-division measurements were
determined by manually tracking division events and subsequent trap locations for
single cells throughout time-lapse image stacks (ImageJ). To couple this infor-
mation to single-cell RNA-seq measurements, the cell release process was recorded
and each cell was manually assigned its corresponding sample ID.

Gene expression data pre-processing. All analysis was performed on log-
transformed expression level measurements (ln(TPMþ 1)). Any cell doublets (as
observed during single-cell release), as well as single-cell libraries with o1,000
mapped genes, were excluded from further analysis. All genes which were
expressed at a level of ln(TPMþ 1)41 in 410% of cells were included in the final
analysis. These constraints yielded 97 single CD8þ T-cells (out of 106 total) and
80 single L1210 cells (out of 88 total) with 9,997 and 10,658 genes for further
analysis, respectively. To account for technical variations leading to different
detection efficiencies for each single-cell library, we assigned observation weights to
each single-cell/gene pair as described previously4. These weights were used for all
subsequent analyses.

Transcriptional similarity comparison. For the analysis of the full gene lists, as
well as cell cycle and T-cell-specific gene lists (Supplementary Data 1–3), weighted
Euclidean distance was used as a metric for transcriptional similarity between cell
pairs. These aggregate measurements of pairwise Euclidean distances for sister cells,
cousin cells and unrelated cells were compared with a Mann–Whitney U-test.
P values for these tests were Bonferroni adjusted to account for multiple hypothesis
testing. These analyses were robust to the use of different distance metrics, such as
Spearman distance, which yielded the same results (Supplementary Fig. 4). All
statistical analysis was performed in MATLAB (Mathworks).

Partial least squares regression (PLSR) modeling. All PLSR modelling was
performed with the commercially available PLS Toolbox for MATLAB
(EigenVector Research). Single-latent variable models were computed with single-
cell time since division measurements used to construct the response variable and
corresponding single-cell gene expression measurements used as predictor
variables. For variable selection, the models were iteratively constructed with 90%
of the data and genes were sorted based on the average variable importance to the
projection (VIP) scores across 10 iterations. To determine the optimal number of
top-ranked genes to include, the model was iteratively re-run with an increasing
number of genes (Supplementary Fig. 9). For the final model, we chose to use the
genes with the top 300 VIP scores; at this point, the addition of more genes did not
appear to increase the amount of variance captured by the cross validated model.
These genes were subsequently used as predictor variables for construction of the
final models. The final models were cross-validated by iteratively constructing
models with 90% of cells and using them to find the latent variable scores for the
remaining 10%. The mean coefficients of determination (± s.d.) across all 10
iterations are reported in Fig. 2e,f. The final models were tested for overfitting by
randomly permuting the response variables, re-calculating the model and deter-
mining the permuted model residuals. A Mann–Whitney U-test demonstrated
significantly (Po0.001) smaller residuals for the original models as compared with
the permuted models, indicating that the model is not overfit for either cell type.

Gene-annotation enrichment analysis. Functional enrichment analysis was
performed with DAVID v6.7 ref. 22. The gene lists used for inter- and intraclonal
transcription comparison (Supplementary Data 4) include genes that demonstrated
significantly greater intra- than interclonal expression similarity (false discovery
rate (FDR)o0.05). The lists used to analyse genes which showed greater tran-
scriptional similarity between sister cells than between cousin cells (Supplementary
Data 5) include genes with the top 1% of rdiff values for both cell types
(Supplementary Fig. 7). The lists used to analyse cell cycle stage-dependent tran-
scription (Supplementary Data 6) include genes with the top 300 VIP scores as

determined by PLSR modelling for the full gene lists of L1210 and CD8þ T-cells.
The full lists of detected genes in each cell type were used as the background gene
lists for all enrichment measurements.
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