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Abstract15

Cell growth rates exhibit cell-intrinsic cell-to-cell variability, which influences cell fitness and size home-16

ostasis from bacteria to cancer. Whether this variability arises from noise in cell growth or cell division17

processes, or originates from cell-size-dependent growth rates, remains unclear. To separate these potential18

sources of growth variability, single-cell growth rates need to be examined across different timescales. Here,19

we study cell-intrinsic size and growth regulation by tracking lymphocytic leukemia cell mass accumulation20

with high precision and minute-scale temporal resolution along long ancestral lineages. We first show that21

cell-size-dependent growth regulation and asymmetric division of cell size do not explain cell-to-cell growth22

variability. We then isolate growth fluctuations from overlapping cell-cycle-dependent growth using a Gaus-23

sian process regression analysis. We find that these growth fluctuations drive cell-to-cell growth variability24

within ancestral lineages despite being independent of cell divisions, cell cycle, and cell size. Overall, our25

results indicate that cell-intrinsic long-term patterns in cell growth are a byproduct of short-term growth26

fluctuations.27

Main text28

All cell populations exhibit cell-to-cell variability in growth [1, 2, 3, 4, 5, 6, 7, 8] and in the underlying29

growth driving processes, such as cell signaling, transcription, and translation [1, 4, 9, 10, 11, 12, 13, 14].30

Understanding the variability between individual cells can elucidate many aspects of physiology and popu-31

lation dynamics. For example, information on cell-to-cell variability can help discriminate between different32

models of cell growth, gene expression, and size-control [9, 15, 16, 17, 18]. In bacteria and many cancers,33

cell-to-cell growth variability can also impact drug treatment responses, as non-genetic low-growth states,34

such as “persister” cells [19], are often more resilient to drugs [8, 17, 20, 21]. Thus, understanding how35

cell-to-cell growth variability arises even between genetically identical cells is of clear importance.36

A key requirement for studying cell-to-cell growth variability is precise growth measurements that en-37

able growth rate monitoring on both short (within a cell cycle) and long (between generations) timescales.38

Knowledge about measurement precision is also required, as growth fluctuations could falsely arise from39

poor measurement precision or stability. Tracking single-cell volume growth rates over long timescales has40

previously been achieved in single-celled organisms using ’mother machines’ [1, 2]. However, this is not41

the case for cell mass growth, and cell volume can fluctuate separately from mass [22]. Importantly, there42

are no long-term (≥4 generations) single-cell growth rate tracking data for mammalian cells, as existing43

mother machines are not suitable for mammalian cells. Here, we overcome these technical limitations by44

utilizing suspended microchannel resonators (SMR) to track the mass accumulation rate of leukemia cells45

across many generations. The SMR is a non-invasive buoyant mass sensor with ∼0.1% mass measurement46

precision [23, 24, 25]. Buoyant mass is analogous to dry mass (near-perfectly correlated in interphase) [26]47

and, from here on, we refer to it simply as ’mass’.48
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The SMR enabled us to monitor single-cell mass accumulation over timescales ranging from minutes to49

a week (Fig 1A), allowing us to determine cell-to-cell growth variability (Figs 1B). Using these cell mass50

(M) dynamics, we can obtain instantaneous growth rates (λ), and the averaged growth rates within each51

cell cycle (λ̄). These are defined as [27]52

λ =
d

dt
lnM(t), (instantaneous growth rate) (1)

and53

λ̄i =
1

τi
ln

(
M(ti + τi)

M(ti)

)
, (cell-cycle averaged growth rate) (2)

respectively, where ti is the time at which the ith cell was born, τi is its cell cycle duration.54

To understand cell-to-cell growth variability, we aim to identify deviations from strictly exponential55

growth in Equation 1. These deviations can arise from cell-size-dependent growth rates, which can reflect56

size-control (Fig 1C) [28]. Alternatively, deviations from exponential growth can also arise from noise in57

the biochemistry driving cell growth, resulting in continuous noise in growth rates (Fig 1C) [4, 13, 29].58

If this noise is sufficiently large, it may influence cell-to-cell growth variability. However, noise in the59

underlying biochemistry of the cell can also result in unequal partitioning of cellular components during60

cell division [13, 29, 30, 31, 32], which could impact cell-to-cell growth variability by imposing growth rate61

changes specifically at cell divisions (Fig 1C). Therefore, a key question is whether continuous noise, i.e.,62

fluctuations, in growth rates can be detected and whether they are “blind” to cell divisions.63

Here, to disentangle these potential sources of cell-to-cell growth variability, we carry out a comprehensive64

characterization of the structure of mammalian cell growth (i.e., overlapping deterministic patterns, degree65

of randomness, timescale of growth fluctuations), which is currently largely undefined. Using high-precision,66

single-cell growth rate measurements of leukemia cells, we first show that most cell-to-cell growth variability67

is not explained by cell-size-dependent regulation of λ̄ or division asymmetries. Next, we utilize Gaussian68

process (GP) regression analysis to infer and isolate growth fluctuations that are independent of longer69

timescale growth regulation as well as measurement fluctuations. These fluctuations reveal that continu-70

ous noise in growth, rather than cell division-specific changes, explains the majority of cell-to-cell growth71

variability in an ancestral cell lineage.72

Results73

Monitoring cell growth across ancestral lineages74

Using the SMR, we collected a large dataset of mouse lymphocytic leukemia L1210 cell growth rates. Our75

data contains 24 lineages (each lineage is an independent experiment) with a total of 235 full cell cycles76

and 2600 h of data (Fig S3A, Table S1). Optimization of system stability allowed us to monitor growth77

in ancestral lineages ranging from 3 to 29 full generations in length with cell mass measurements every ∼178

minute. The SMR is not capable of tracking the growth of both sister cells following cell division, and one79

of the daughter cells is randomly discarded following every division. This data represents, to the best of our80

knowledge, the longest instantaneous growth rate monitoring data for mammalian cells to date. Furthermore,81

because our growth rate measurements reflect mass accumulation, our results are not sensitive to volume82

fluctuations reported for many mammalian cells [33, 34].83

We first characterized the overall growth behavior of the cells. The time that cells spent in the SMR did84

not correlate with λ̄ (Fig S3B). The cell cycle durations (τ = 10.2±2.0 h, mean±SD) were comparable to85

independent studies with L1210 cells [23, 35], and the amount of variability in τ was comparable to previous86

work where all data were collected at the same time (Fig S3C) [36]. All L1210 cells in bulk culture were87

positive for the proliferation marker Ki-67 (Fig S3D) and all cells measured with SMR were growing. A88

cell in the SMR is in isolation from other cells and exposed to fresh media with every mass measurement,89

thereby excluding growth regulation due to autocrine and paracrine signals [37, 38]. To focus our analyses90

on steady-state growth, the first (partial) cell cycle of each lineage was removed. We also examined the91

technical stability of our SMR setup by repeatedly measuring the mass of polystyrene beads. We did not92

observe systematic fluctuations in bead mass (Fig S3E), and our measurement calibration drifted only 0.07%93
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Figure 1: Cell-to-cell growth rate variability in ancestral lineages. (A) Two example sections of buoyant
mass traces in ancestral L1210 cell lineages collected using the SMR. Buoyant mass of an isolated cell was
measured approximately every minute under steady environmental conditions. At each division one daughter
cell is randomly discarded. Zoom-ins to a single cell cycle and to a 1-hour section are shown on the right. (B)
Left, average cell growth rates (λ̄) across the three longest lineages. Right, coefficient of variability (C.V.) of
λ̄ in all lineages (N=24 independent lineages). Bar and whiskers depict mean±SD. (C) A schematic of the
potential sources of cell-to-cell growth rate variability. Cell-to-cell growth rate variability may arise from cell-
size-dependent growth. Alternatively, this variability could also arise from noise in cell growth. Such noise
may be continuous, or specific to cell divisions (vertical dashed lines indicate cell divisions). To understand
where cell-to-cell growth rate variability arises from, we must resolve the ‘structure’ of cell growth.

during a typical cell cycle. Overall, our ancestral lineage dataset reflects cancer cells growing under steady,94

high-growth conditions, where all cells actively proliferate, and growth behaviors can be attributed to cell-95

intrinsic sources.96

When examining the generic characteristics of cell-to-cell growth variability, we observed that cells within97

each lineage had a similar λ̄, although lineages differed in their average growth rate by ∼11% (Fig. 1B, Fig98

S3A). Experiments monitoring the proliferation rate of distinct L1210 cell lineages have also reported similar99

observations, where each cell lineage proliferates at its lineage-specific rate [8, 36]. On average, the cell-to-cell100

growth variability within each lineages was ∼8% (Fig. 1B). Here, we focus on explaining this within-lineage101

growth variability.102

Connections between size-control and cell-to-cell growth rate variability103

Cell size-control is often studied within an autoregressive framework [28, 39], where the cell size-control104

strategy is defined by a parameter α. This relates the cell’s birth mass (M0) to the daughter cell’s birth105

mass (Mf ):106

Mf = 2M0(1− α) + 2αE[M0] + ξM , (3)

where E[M0] is the average initial mass, or equivalently the mass added during the cell cycle, and ξM107

is a Gaussian random variable. Values of α range from 0 to 2 with lower α values indicating a weaker108

size homeostasis [39]. Many cell types are reported to follow the adder model of size-control (α ≈ 0.5)109

[5, 6, 40, 41, 42, 43, 44, 45, 46], where cells grow an approximately constant amount in each cell cycle.110

Using our new dataset, we estimated α (Eq. 3) in each lineage. On average, our data is consistent with111

an adder size-control strategy (α = 0.55±0.06, mean±SE, N=21, 3 shortest lineages excluded). This α can112

be achieved by regulating τ and/or λ̄. When examining these size-dependencies, we observed that almost113

all individual lineages have a negative correlation between cell birth mass and τ (Pearson R2 = 0.25±0.07,114

mean±SE, Fig 2A), but not between between cell birth mass and λ̄ (Pearson R2 = 0.10±0.04, mean±SE,115
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Figure 2: Size-control does not explain cell-to-cell growth variability. (A-B) Correlation between cell birth
mass and τ (A) or λ̄ (B) in the three longest lineages. Each inset displays the slope of the correlation for
all lineages with ≥8 cells (N=12 independent lineages). Inset red line and shaded area depict mean±SE
(data weighted by lineage length), p-value depicts one sample t-test in comparison to 0. (C) Cell size-control
parameter, α when analyzed normally (α, grey) and when conditioning the data on λ̄ to only considering
the contribution of cell cycle duration variability on α (αλ, red). Dots depict independent lineages (N=24),
bar and whiskers depict mean±SE, p-values obtained by Welch’s t-test.

Fig 2B). To quantify the relative contribution of λ̄ to the overall size-control, we followed the approach of116

Cadart et al. [5] and used the scaled regression coefficient of initial size on average growth rate as a measure117

of the role of growth in size-control. The regression coefficient is given by118

βx,λ̄ = cov(x, λ̄)/var(x). (4)

To obtain a non-dimensional parameter, we scale by the average generation time to obtain αλ = βx,λ̄E[τ ].119

Computing αλ revealed that conditioning the data on the growth rate had no impact on the strength of120

size-control (Fig 2C). Thus, in L1210 cells, cell-size homeostasis can be maintained by the regulation of τ121

alone, and the variability in cell-to-cell growth rates cannot be explained by size-control.122

Cell-to-cell growth variability is independent of cell division symmetry123

We next examined if asymmetric cell mass divisions, where the mass of the newborn daughter cell is not124

perfectly 1/2 of the mass of the dividing mother cell, could explain the cell-to-cell growth variability. In each125

lineage, λ̄ typically changed ∼7% from mothers to daughters (Fig 3A), and cell mass divisions displayed,126

on average, ∼3% deviation from perfectly symmetrical divisions (Fig 3B). When we correlated the division127

asymmetry with the change in λ̄ in each mother-daughter pair, we did not observe any correlation (Fig 3C).128

In addition, the lineages displayed little memory of λ̄ and the autocorrelation function of λ̄ decayed to zero129

in two generations (Fig 3D). Thus, the variability in λ̄ is not explained by systematic patterns (memory) in130

λ̄ or by asymmetric cell mass divisions. We note that this degree of division asymmetry is very low, and131

previous results have suggested over 2-fold higher asymmetry in cell mass divisions across cell lines [47].132

Isolation of growth fluctuations133

Having excluded size-control and mass division asymmetry as potential explanations for cell-to-cell growth134

variability, we moved to examine the structure of growth within the cell-cycle in more detail. As discovered135

in a previous study [48], we observed that each lineage had a cell-cycle-dependent growth trend that was136

dependent on the relative age in the cell cycle, not the absolute time since cell birth (Fig S4). This results in λ137

being cell-size and cell-cycle-dependent. To isolate fluctuations in λ around the cell-cycle-dependent growth138

trend, we used a Gaussian process (GP) regression analysis. GP is a a Bayesian, kernel-based method which139

can be used to simultaneously smooth and decompose a function f , as shown before using different types140

of growth measurements [49, 50]. The GP is a based on a series expansion of the form f(t) =
∑
i≥0 βiφi(t)141

where {φi(t)} represent basis functions. Instead of specifying these functions directly, one places Gaussian142

priors on βi. The posterior distribution p(f(t)|{f̂(ti)}) (the distribution of the function values f conditioned143
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Figure 3: Cell-to-cell growth variability is independent of cell mass division errors. (A,B) Absolute %
change in λ̄ from mother to daughter (A), and absolute % cell mass division asymmetry (i.e. deviation from
perfectly symmetrical division of cell mass) (B). Data is shown separately for all cells (red, n=211 mother-
daughter pairs) and the averages of each lineage (blue, N=24 independent lineages). Bar and whiskers
represents mean±SD. (C) Correlation between cell mass division asymmetry and the change in λ̄ from
mother to daughter. Each dot represents a mother-daughter pair (n=221). Black line and shaded area
depict linear fit and 95% confidence intervals. Pearson correlation and p-value (ANOVA) are also displayed.
(D) Autocorrelation of λ̄ in the 10 longest lineages. Black line and shaded areas represent mean±SEM.

on the data) can then be obtained analytically by marginalizing over the βi. This distribution is determined144

only by the covariance function145

k(t, t′) = cov(f(t′), f(t)) (5)

which is selected based on assumptions about the signal. The sum and derivatives of a Gaussian process are146

also Gaussian processes, and the process inherits the smoothness properties of the kernel [51]. Consequently,147

we can use the isolated mass terms of GP to infer λ. Unlike other smoothing procedures, such as spline148

smoothing or Savitzky-Golay filters, in GP, the error in the mass measurements does not propagate, leading149

to spurious correlations in the inferred λ.150

Our specific GP pipeline (see SI Appendix, section 2 ) is as follows (Fig 4A): First, we paste together151

the log masses to obtain a continuous signal:152

f̂(t) = ln
Mi(t)

M b
i

+
∑
j<i

ln
Md
i

M b
i

(6)

where M b
i , Md

i and Mi(t) are the masses of the ith cell in a lineage at cell birth, cell division and (absolute)153

time t, respectively. Due to the complex growth dynamics in mitosis [25, 26], we excluded mitoses from our154

analysis. Our GP decomposes the log summed mass measurements as155

f(t) = λ0t+ ftrend(t) + fflucs(t) + ε(t). (7)

where ε is a delta correlated Gaussian noise term.156

This GP-based approach enabled us to isolate cell mass and λ behaviors (Fig 4A-B). The posterior157

distributions of the cell-cycle-dependent λtrend = f ′trend(t) and the fluctuations λflucs = f ′flucs(t) were narrow158

enough to separate changes in these growth behaviors on a sub-hour timescale (Fig 4C). Before analyzing159

these growth behaviors in more detail, we verified that the cell mass and λ fluctuations reflect changes in160

cell mass rather than measurement error. We found that consecutive residuals of our GP analysis were161
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not correlated (Fig S5A, R2=0.0046). The degree of these correlations was comparable to the degree of162

correlations observed in polystyrene bead measurements (Fig S5B), which is the level expected based purely163

on measurement noise. However, we note that lineage # 2 displayed higher correlations between consecutive164

residuals than other lineages and data from this lineage may be skewed. We also observed that the GP-165

isolated mass fluctuations in cells are orders of magnitude higher than those observed in polystyrene beads166

(Fig S5C-D) and that the cell mass fluctuations took place on several orders of magnitude longer timescales167

than the bead mass fluctuations (Fig S5E). Thus, the GP-isolated cell mass and λ fluctuations do not reflect168

measurement artifacts but rather ’true’ growth behaviors.169
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Figure 4: Growth rate fluctuations are independent of the cell-cycle. (A-B) Analysis workflow: (A) Cell mass
traces are plotted on a logarithmic scale; mitoses are removed and the mass traces are summed. Gaussian
process is used to decompose the summed masses into discrete terms that reflect the cell-cycle-dependent
mass trend and mass fluctuations. (B) The isolated mass terms are converted to instantaneous growth
terms. (C) An example of the isolated instantaneous growth terms over four full cell cycles in lineage #1.
The gaps in data are cell divisions. Solid lines and shaded areas display the mean ± SD of each posterior
distribution. The data is normalized to mean-zero. (D) The cell-cycle-dependent λ. (E) Autocorrelations
of the λ fluctuations within each cell cycle. (F) Magnitude (standard deviation) of the λ fluctuations in
different cell cycle sections (i.e. at different cell age). In panels D-F, colored lines depict the three longest
lineages and black line with shaded areas depict all lineages (mean ± SD, N=24 independent lineages).

Growth fluctuations are independent of the cell-cycle and cell-size170

We examined the GP-isolated growth terms to understand their impact on λ. The cell-cycle-dependent171

λtrend was typically maximized in the middle of each cell cycle (at age 0.5±0.1, mean±SD, Fig 4D). From172

cell birth to the point of maximum growth, the cell-cycle influenced λ by 0.028±0.008 1/h (mean±SD),173

which corresponds to 38±14% (mean±SD) of total λ. Similar conclusion was reached when growth rates174

were analyzed using a simple fitting approach (Fig S6). The influence that the λtrend and the λflucs had on175

the total λ were comparable. However, as our GP analysis assumes every cell in a given lineage displays the176
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same λtrend (after normalization for cell age), essentially all cell-to-cell growth variability is included in the177

λflucs. This allows us to focus on the λflucs as we aim to understand cell-to-cell growth variability.178

When examining the autocorrelation of λflucs, we did not observe any periodicity (Fig 4E). This is in179

contrast to a recent study, which also examined mass growth in L1210 cells, proposing that cell growth180

undergoes oscillations [52]. The λflucs displayed a relaxation timescale (1/γ) of ∼4 hours whether analyzed181

from the autocorrelation function or from the variance in the magnitude of the fluctuations (SI Appendix,182

section 1). These relaxation timescales are shorter than τ and thereby consistent with λ̄ having little183

memory over generations.184

Next, we looked for cell-cycle-dependency in λflucs. We did not observe any difference in the magnitude185

(standard deviation) of λflucs between the cells of different age in the cell-cycle. Thus, the λflucs are indepen-186

dent of the cell-cycle state (and approximate cell-size) (Fig 4F), even though the total growth rate of cells187

is not (Fig 4B). Previous studies in bacteria and mammalian cells have suggested that cell volume growth188

variability is higher in small cells at the beginning of the cell cycle than in large cells later in the cell-cycle189

[27, 33]. As we do not observe this, cell-cycle-dependent cell mass behavior might be distinct from cell-cycle-190

dependent volume behavior. To further analyze if the λflucs displayed cell-size and/or growth-dependency, we191

performed regressions on the magnitude of the λflucs with cell’s birth mass, division mass, the mass added in192

a cell-cycle or τ (Fig S7). We did not observe any statistically significant correlations. Overall, these results193

suggest that the λflucs do not reflect cell-size or cell-cycle -dependent growth regulation, nor do the λflucs194

display any clear patterns.195

We have also used our data to analyze cell-to-cell variability in λ on different timescales. We detail this196

analysis and its potential impact in the SI Appendix, section 3.197

Cell-to-cell growth variability is predicted by cell-division-independent growth198

fluctuations199

Our isolation of λflucs provides us with an opportunity to examine if cell growth rates are sensitive to cell200

division events. We compared the observed cell-to-cell variability in λ̄ to the prediction of a simple null model201

in which instantaneous growth rate fluctuations are causally decoupled from the cell-cycle. Specifically, we202

modeled λflucs(t) as an Ornstein–Uhlenbeck (OU) process – essentially a continuous time mean-reverting203

random walk [53] – which was motivated by the exponential decay in λflucs autocorrelations and the lack of204

correlations between λflucs and cell-size or age (Fig 4E, Fig S7). An OU process can be defined mathematically205

by the stochastic differential equation206

d

dt
λflucs = −γλflucs +

√
2Dξ. (8)

Here ξ is a white noise term, D is the diffusion coefficient and γ is the relaxation rate. At cell-division, we207

assumed that λflucs is perturbed by a Normal random variable z.208

This model interpolates between two simple limits: As the growth noise introduced at cell division (σz)209

→ 0 we are left with the standard OU process which is “blind” to cell divisions (continuous noise). As210

D → 0 we obtain a model where growth variation is tied to the cell division events. The contribution of the211

continuous growth fluctuations and division-specific growth noise can be identified by looking at the time212

averaged growth rate,213

λ̄t = t−1 lnM(t)/M(0). (9)

where t = 0 is when cell division occurs. The variance of λ̄t can be decomposed as214

var(λ̄t) = σ2
c,t + σ2

d,t (10)

where σc and σd respectively represent the variation from the OU and division noise. When the characteristic215

relaxation time-scale (1/γ) of this process is much less than the cell age (the absolute time since cell birth),216

these are given by (see SI Appendix, section 1 )217

σ2
c,t =

2D

γ2t
. (11)
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Figure 5: Cell-to-cell growth variability within ancestral lineages arises predominantly from continuous
growth fluctuations (A) Scaling of var(λ̄t) with age (t) as observed in raw data (left, N=24) and GP-isolated
λflucs (right, N=10 longest lineages). Each red lines depicts a separate lineage, while dotted lines depict
model predictions. (B) MSD ratio in simulated datasets (teal/grey) and in cell data (red). Simulated data
was pooled based on the ratio between D and γ, so that high values indicate that continuous cell growth noise
dominates over cell division noise. Line and error bars represent mean±SEM. Each dot depicts a separate
lineage (for cell data, N=10 longest lineages). (C) An example of the λflucs in lineage #1 (continuous red
line) and in a corresponding OU model simulated data, where growth is ’blind’ to cell divisions (continuous
black line). Thick horizontal bars indicate λ̄ for each cell. Data is normalized to mean-zero. (D) Correlation
of cell-to-cell variability in (λ̄) between the cell data and the simulated data with continuous OU noise. Black
line indicates x=y. Each dot depicts a separate lineage (N=10 longest lineages), and error bars depict SEM.

and218

σ2
d,t =

σ2
z

(γt)2
. (12)

We compared these expressions to the experimental data by examining the scaling between var(λ̄t) and cell219

age (t) (Fig 5A). The data favor the former model where scaling between var(λ̄t) and cell age (t) has an220

exponent of -1 (Fig 5A, black dashed lines), as growth variation is blind to cell divisions. This conclusion221

persisted whether λflucs was isolated with GP or analyzed directly from raw data (Fig 5A, red solid lines). We222

note, however, that we observed scaling exponents lower than those predicted by pure OU noise, especially223

when analyzing the GP isolated λflucs.224

We then generated simulated growth data with graded levels of continuous and division noise, and225

analyzed them using the GP regression to isolate fluctuations in λ. We interpolated between the two limits226

by fixing the cell-cycle averaged growth rate (σ2
λ̄

= var(λ̄τ )) and varying σ2
c,τ = σ2

λ̄
− σ2

d,τ . Here τ is the227

generation time. Our simulated data sets were subject to the same GP smoothing as the experimental data.228

To compare the simulated data from these models with the experimental L1210 cell data, we calculated229

the mean squared displacement (MSD) of λflucs within each cell, MSDwithin, by calculating the sqaured230

difference in λflucs values across time lags restricted to individual cell cycles. Separately, we computed231

MSDbetween by calculating the squared difference in λflucs values across equivalent time lags between differ-232

ent cells. The MSD ratio, MSDbetween/(MSDwithin+MSDbetween), separates the simulated datasets using233

different combinations of D and σz (Fig 5B). Thus, while the GP can suppress the fluctuations on the234
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timescale of a cell-cycle (Fig 5A), it preserves the growth rate jumps at cell division, allowing us to separate235

the contributions of continuous and division noise. Using the MSD ratio, we observed that the cell data236

is indistinguishable from the limiting case simulations where σz = 0 (Fig 5B). Thus, growth noise is not237

introduced at cell divisions but rather continuously throughout the cell cycle, akin to an OU process.238

Finally, to test whether a simple OU model predicts the cell-to-cell growth variability within cell lineages,239

we fitted the parameters in the OU model using a loss function that depends only on fluctuations within the240

cell cycle. In particular, we fit γ and D by matching the variance of At =
∫ t

0
λflucs(s)ds between the model and241

the data, since At has smaller error bars than λflucs. Using the fit parameters for each lineage, we simulated242

lineages with a similar number of cells and time resolution as our experimental data (Fig 5C). We then243

compared the predicted cell-to-cell variability in (λ̄) in the simulated lineages with the experimental data,244

and we observed a strong correlation (Pearson R2 = 0.72, Fig 5D). We conclude that cell-to-cell variability245

in λ̄ can be largely explained by the instantaneous growth rate fluctuations, which are independent of cell246

divisions and size.247

Discussion248

Here, we have elucidated the structure of cell growth by monitoring single leukemia cell mass accumulation249

rate across ancestral lineages. The high precision and temporal resolution of our data has allowed us to250

isolate overlapping but independent growth behaviors. We have verified that the growth behaviors we251

observe cannot be explained by technical measurement fluctuations, and our experiments are carried out252

under steady external conditions using multiple independent setups. Thus, our results reflect predominantly253

cell-intrinsic behaviors in biomass growth. However, our work is not without limitations, and we discuss254

these in the SI Appendix, section 4.255

We find that cell-to-cell growth variability within ancestral lineages can be explained by a two parameter256

model where the fluctuations in instantaneous growth rates are independent of cell divisions and cell size. In257

contrast, size-dependent growth rates, asymmetric divisions of cell mass, and growth rate perturbations at258

cell divisions do not explain the cell-to-cell variability in growth. Notably, modeling studies on imperfect cell259

divisions have suggested that partitioning errors introduce significant cell-to-cell variability [4, 13, 29, 30],260

and it would be reasonable to assume that this extends to cell growth rates. Indeed, recent studies in bacteria261

[27, 54] and mammalian cells [33] have revealed that cell volume growth fluctuation are larger in newborn262

cells than later in the cell cycle, suggesting that cell divisions may introduce growth noise. Our results on263

cell mass growth argue against this conclusion in the L1210 leukemia cells. The separate regulation of cell264

volume and cell mass growth may explain these discrepancies [22], but we also note that our cell line displays265

less cell mass division asymmetry than many other mammalian cell lines [47].266

More broadly, our work shows that long-term cell-to-cell growth variability is actually a byproduct of267

continuous short-timescale stochasticity in growth. In a simplistic and hypothetical model, where growth268

rates are set by a single growth limiting-molecule, our results suggest that this growth limiting-molecule is269

either very high in abundance or that cells possess mechanisms that limit partitioning errors of the molecule.270

Cells have mechanisms to promote symmetric partitioning of certain cell cycle regulators [55, 56] and cell271

organelles [57], making it plausible that also key growth regulators undergo similar partitioning.272
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Materials and Methods273

Cell culture conditions274

The L1210 cells were obtained from ATCC (#CCL-219) and validated negative for mycoplasma. All SMR275

experiments and the maintenance of cell cultures were carried out in RPMI 1640 medium (Invitrogen,276

#11875093), supplemented with 10% heat inactivated FBS (Sigma-Aldrich, #F4135, Lot#13C519), 10277

mM HEPES (Invitrogen, #15630080), 1 mM sodium pyruvate (Invitrogen, #11360070) and 1x Antibiotic-278

Antimycotic (Invitrogen, #15240112). All experiments were started when cells were at non-confluent and279

exponentially growing concentration (100.000 to 500.000 cells/ml).280

Cell cycle and proliferation status were examined by fixing cells with 4% PFA for 10 min, permeabilizing281

cells with 0.25% Triton X-100 for 10 min, washing and blocking the cells with PBS supplemented with 5%282

BSA for 15 min. The cells were labeled for Ki-67 with 1:250 diluted Alexa Fluor 488 conjugated anti-Ki-67283

rabbit monoclonal antibody (Cell Signaling Technologies, #11882) o/n, washed with PBS supplemented with284

5% BSA for 15 min, then labeled for DNA with FxCycle PI/RNase staining solution (Invitrogen, #F10797)285

for 30 min. The cells were analyzed using a flow cytometer (LSR II HTS, BD Biosciences, 488 nm and 561286

nm excitation lasers, 530/30 and 610/20 emission filters).287

SMR operation288

The SMR chip was mounted on a metal holder connected to a 37°C water bath to maintain constant tem-289

perature. The cells were loaded into the SMR from vials pressurized with 5% CO2 and 21% O2. The fluidic290

pressure system was set to replenishes fresh media into SMR with every cell measurement, approximately291

every 1 min, thereby maintaining steady conditions throughout the experiment. Full details of the SMR292

setup, operation and frequency data analysis can be found in [48, 25, 35].293

The following changes were implemented to increase the long-term stability of the single-cell hydrody-294

namic trap: 1) Fresh media in SMR was replenished directly from 20 ml glass Wheaton vials to minimize the295

fluid-height driven pressure difference during the trap. 2) The glass Wheaton vials were place on microme-296

ters to tune fluid height daily throughout the experiments. 3) The glass Wheaton vials were not heated as297

heating accelerates water evaporation from the media. 4) Immediately after a cell was loaded into the SMR,298

we flushed other cells out of the SMR and the tubing using a flow rate of more than 10 nl/s and taping of299

the tubing for approximately 2 min. 5) After the initial cell loading step, the SMR was kept in the dark to300

remove any potential phototoxicity.301

Across the study, three independent SMR setup were used to collect the data and no systematic differences302

were observed between the results of each setup.303

System calibration304

The SMR systems were calibrated using two approaches [48, 25, 35]. First, the SMR was loaded with305

sodium chloride solutions (0, 2, 6, 10 and 16% w/v) for which fluid densities are known. The SMR resonant306

frequency was measured at RT using open-loop setting to generate a baseline solution density calibration307

curve. Second, the change in SMR resonant frequency to an object of known buoyant mass was calibrated to308

derive a mass calibration factor (Hz/pg). 10 µm diameter polystyrene beads of density 1.05g/cm3, suspended309

in DI water or PBS, were used as calibration particles.310

Autocorrelations311

Autocorrelation coefficients were obtained by using the following equation.312

ACF (k) =
1

(N − k)σ2

N−k∑
n=1

(Xn − µ)(Xn+k − µ) (13)

Where Xn is the data (i.e. either λ or λ̄). N and σ are the total number of data points and the standard313

deviation of Xn, respectively. For plotting the ACF of λ as a function of time, we normalized the discrete314
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time step between adjacent data points of the above equation by the median value of the time difference315

between the adjacent data points in our measurement or simulation (t = kxcal, where xcal = median(∆t)).316

Mean Squared Deviation (MSD) analysis317

The mean squared deviation (MSD) of the fluctuations in λ for a time lag τ is defined as below,318

MSD(τ) =
1

N

tf−τ∑
t=t0

(λ(t+ τ)− λ(t))2 (14)

where N is the total number of data summed between the first time point t0 and the last time point tf319

subtracted by the time lag τ . MSD was computed for each lineage.320

The MSDwithin of the fluctuations in λi was calculated by only computing the MSD values within each321

cell i in the lineage. In other words,322

MSDwithin(τ) =
1

k

∑
i

 1

Ni

tf,i−τ∑
t=t0,i

(λi(t+ τ)− λi(t))2

 (15)

where k is the total number of cells within the lineage, Ni , t0,i and tf,i are the total number of data summed,323

the first time point and the last time point of the data, respectively, for individual cell i in the lineage.324

The MSDbetween of the fluctuations in λi and λj was calculated by only computing the MSD values325

across different cells. In other words,326

MSDbetween(τ) =
1

Nbetween

∑
i

 1

Ni

tf,i−τ∑
t=t0,i

(λj(t+ τ)− λi(t))2

 (16)

where j 6= i. Note that for each cell i, there is at most one other cell j for which the deviation λj(t+τ)−λi(t)327

can be calculated. This limitation arises due to the sequential nature of our dataset, where tf,i < t0,j if i < j.328

The MSD ratios represent329

MSDratio =
〈MSDbetween〉

〈MSDbetween〉+ 〈MSDwithin〉
(17)

where < MSD > indicate values averaged for τ between 0 h and 4 h.330

Data and code availability331

Data is a combination of our previously published data (7 lineages) [25] and new experimental data (17332

lineages), all collected under identical conditions. All single-cell mass traces can be found attached in the333

online supporting information (Table S1). Codes used for the Gaussian process regression analysis and334

generation of simulated data can be found at: https://github.com/elevien/L1210335
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