
Complete remission (CR) in patients 
with cancer is traditionally defined as 
the absence of a visible tumour by use of 
sensitive radiological imaging (for example, 
positron emission tomography (PET) 
and/or computer tomography (CT) or 
magnetic resonance imaging (MRI) scan) 
and, in some cases, histological examination 
of tissue. Conventional chemotherapy 
regimens induce CR in the majority of 
patients with acute leukaemia or aggressive 
lymphoma1–4. By contrast, chemotherapy 
rarely induces CR in patients with metastatic 
carcinomas and sarcomas, multiple 
myeloma or chronic leukaemias5–10. The 
introduction of effective targeted therapies 
has changed the response paradigm for some 
patients, such as those with chronic myeloid 
leukaemia (CML), epidermal growth factor 
receptor (EGFR)-mutated or ALK receptor 
tyrosine kinase (ALK)-rearranged lung 
adenocarcinoma, KIT proto-oncogene 
receptor tyrosine kinase (KIT)-mutated 
gastrointestinal stromal tumours and 
BRAF-mutated melanoma. Most patients 
with these diseases now achieve objective 
responses and, in some cases, even CR11–16. 
A panoply of therapeutics that target other 
kinases, transcriptional modifiers, immune 
checkpoints and other cancer vulnerabilities 
is currently under preclinical and clinical 
investigation. Used as monotherapies and 
in combination, these agents are likely 
to usher in a new era in which patients 

Rationale for targeting MRD
There are multiple conceptual advantages 
to treating patients with MRD-only disease 
rather than waiting for clinical relapse to 
initiate further therapy. First, the number 
of cancer cells is likely to be positively 
correlated with clonal complexity and thus 
with the likelihood of subclonal resistance 
to one or more therapeutics19 (FIG. 1). 
Second, minimal numbers of malignant 
cells may be less effective at remodelling 
microenvironments, reprogramming 
infiltrating haematopoietic cells and 
inducing chemoprotective niches20. As 
a result, certain drugs may have greater 
efficacy against MRD than against the same 
cancer at the time of clinical relapse. Third, 
the ability of patients to tolerate drugs with 
substantial side effects may be better when 
only MRD is present compared with the time 
of fulminant relapse. Fourth, if cure requires 
the eradication of all tumour cells capable of 
driving relapse, there are likely fewer of these 
cells at the time of MRD. Cancer stem cells 
are less sensitive to many drugs than more 
differentiated tumour cells, but they are not 
completely resistant. Thus, it follows that 
cancer stem cells are enriched as a fraction of 
malignant cells within MRD, but their total 
number is likely reduced in MRD compared 
with the time of frank relapse21.

Evidence that treating MRD can increase 
the rates of cure. The strongest evidence 
that treatment of MRD can prevent relapse, 
which is a measurable surrogate for cure, 
comes from the experience of using adjuvant 
(and to some extent neo-adjuvant) therapy 
for epithelial tumours and sarcomas, which 
is fundamentally intended to eradicate MRD 
outside the surgical resection. Studies across 
multiple cancer types have confirmed that 
more patients achieve long-term disease-free 
survival with the combination of surgery 
and adjuvant (or neoadjuvant) therapy than 
with surgery alone22–28.

Similarly, for haematological cancers 
such as acute leukaemias or aggressive 
lymphomas, a single cycle of intensive 
chemotherapy can induce CR, but virtually 
no patients are cured without additional 
therapy to eradicate MRD29. In patients 
with acute leukaemia, flow cytometry 
of blood or bone marrow can detect 

with advanced haematological and solid 
cancers achieve CR in both front-line and 
salvage settings.

CR, whether achieved by chemotherapy, 
targeted therapy, radiation, surgery or 
a combination, typically requires >99% 
(that is, >2–3 log10) reduction in tumour 
burden17,18. In a hypothetical patient with 
five metastatic lesions averaging 2 cm3 
each, this would equate to a reduction 
from approximately 1010 tumour cells to 
<108 tumour cells (FIG. 1). These remaining 
tumour cells have traditionally been 
called minimal residual disease (MRD). 
Not all MRD cells are likely to contribute 
to a clinical relapse, so the term MRD is 
somewhat nonspecific. Although a full 
discussion is beyond the scope of this 
Opinion, we introduce a potentially useful 
nomenclature to distinguish different types 
of residual matter in BOX 1.

For the sake of simplicity, we define 
MRD as follows: malignant cells that 
remain in a patient who achieves CR 
and that share phenotypic similarity (for 
example, histologic appearance and lineage 
markers) and genetic heritage (for example, 
truncal mutations and chromosomal 
rearrangements) with the original tumour 
cells. Residual cells that harbour somatic 
alterations and/or phenotypic alterations 
but are not fully malignant, such as those 
causing a dysplastic field effect, are not 
included in this definition of MRD.
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Abstract | Therapeutics that block kinases, transcriptional modifiers, immune 
checkpoints and other biological vulnerabilities are transforming cancer treatment. 
As a result, many patients achieve dramatic responses, including complete 
radiographical or pathological remission, yet retain minimal residual disease (MRD), 
which results in relapse. New functional approaches can characterize clonal 
heterogeneity and predict therapeutic sensitivity of MRD at a single-cell level. 
Preliminary evidence suggests that iterative detection, profiling and targeting of 
MRD would meaningfully improve outcomes and may even lead to cure.
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aberrant immunophenotypic populations 
consistent with MRD at frequencies of 
≤0.01% of cells17,30–34. MRD detection with 
similar sensitivity is achievable by PCR 
or next-generation sequencing for gene 
fusions, patient-specific mutations or 
clonal rearrangements of immunoglobulin 
(in B cells) or T cell receptor (in T cells) 
genes17,30,33,34. A positive test for MRD is 
not an absolute indicator of relapse, even 
upon completion of therapy, as the test may 
detect cells (or nucleic acids derived from 
those cells) that lack the ability to proliferate 
into a relapse (BOX 1). Nonetheless, a positive 
test for MRD in these patients, regardless of 
method, has repeatedly been associated with 
inferior prognosis33,35–46.

Chemotherapy intensification based on 
MRD levels. Perhaps the most successful 
application of MRD-directed therapy 
is in children with acute lymphoblastic 
leukaemia (ALL), where tailoring 
consolidation therapy (that is, treatment 
after achieving CR) on the basis of MRD 
load is standard practice47. The presence or 
absence of MRD above defined thresholds 
directs relatively crude de-intensification 
(that is, lower doses) or intensification (that 

inform the rational selection of second-line 
or third-line therapy. Patients with CML 
who achieve optimal responses to first-line 
or second-line TKI therapy (defined as 
sustained, deep remissions of greater than 
4–5 log10 reductions in the BCR–ABL 
transcript according to the International 
Scale) may be candidates for drug cessation 
after multiple years of TKI therapy50. 
In recent trials, approximately one-half of 
patients who discontinued therapy under 
those circumstances remained in prolonged 
molecular remission50–55. The last reported 
median follow‑up from the Stop Imatinib 
(STIM1) trial of imatinib discontinuation 
reached 77 months (range 9–95 months), 
with similar follow‑up for those alive and 
without molecular recurrence (80 months, 
range 55–93 months)55. Follow‑up for the 
STOP second generation (2G)-TKI study 
of dasatinib and nilotinib discontinuation 
had a median of 47 months (range 
12–65 months)54.

The experience with CML provides 
two potential insights relevant to curing 
cancer based on iterative MRD testing. 
First, relatively long-term treatment with 
continuous therapeutic pressure may be 
necessary to completely eradicate the 

is, higher doses with or without allogeneic 
stem cell transplantation) of therapy; it 
does not guide the selection of targeted 
therapeutics to exploit the biological 
vulnerabilities of MRD (FIG. 2). Increasing 
levels of MRD after completion of therapy 
can inform clinicians about impending 
relapse. This may provide more time to 
plan salvage therapy but, again, does not 
guide the selection of targeted approaches 
to eradicate resistant clones.

Extended targeting of MRD: the CML 
experience. We propose that the next 
frontier for improving outcomes among 
patients who achieve CR is the precise 
targeting of MRD through genetic, 
transcriptional, functional and other 
predictive biomarkers. The treatment of 
CML and ALL carrying the BCR–ABL 
fusion kinase48,49 already incorporates 
genetic testing of MRD to guide therapeutic 
selection. Patients with inadequate initial 
responses to tyrosine kinase inhibitors 
(TKIs) or an increase in the amount of 
MRD following an initial response are 
commonly tested for the presence of 
BCR–ABL kinase domain mutations that 
confer TKI resistance. This testing can 
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Figure 1 | Paradigms for management of MRD. The current approach is to 
treat patients until they achieve complete remission (CR). This could be 
through surgical resection, radiation, chemotherapy or a combination of these 
treatments. Patients are then typically observed until they relapse. Instead, 
minimal residual disease (MRD) could be sampled iteratively, tested for 

therapeutic susceptibility and treated with the agents identified as most effec-
tive by that test. Once a patient’s MRD falls below the minimum detectable 
threshold (dashed line), treatment could be stopped, continued indefinitely or 
continued for a defined period with curative intent. Potential advantages and 
disadvantages of targeting MRD are listed and discussed further in the text.
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malignant cells. The reasons for this remain 
poorly understood, but one possibility is that 
CML stem cells are primarily quiescent and 
only intermittently enter the cell cycle56,57. 
While quiescent, they fail to undergo 
oncogene withdrawal-induced apoptosis, 
although this apoptosis is readily induced 
by TKIs in more differentiated progeny58. 
Complete eradication of the quiescent 
population may require that adequate 
inhibition of BCR–ABL kinase activity 
continues for long enough to allow each 
CML stem cell the chance to enter the cell 
cycle and thereby become susceptible to 
oncogene withdrawal-induced apoptosis. 
Populations of cells with stem cell-like 
properties exist in many types of cancer59,60, 
suggesting that the requirement for extended 
therapy might be common.

The same concept of long-term 
therapeutic pressure is also established 
for ALL maintenance therapy with the 
thiopurines 6‑mercaptopurine (6‑MP) 
or 6‑thioguanine (6‑TG), which are given 
in combination with other low-dose 
chemotherapy agents for 2–3 years61,62. 
Resistant clones that emerge late in this 
maintenance phase frequently harbour 
mutations in 5ʹ-nucleotidase, cytosolic II 
(NT5C2) that directly confer resistance 
to 6‑MP and 6‑TG63,64. This mechanism 
of tumour cell-autonomous resistance 
suggests that thiopurines improve cure rates 
by directly killing the last leukaemia cells 
capable of driving relapse (that is, the MRD) 
rather than acting through non-tumour 
cell-autonomous mechanisms.

The second insight from the CML 
experience is that patients who inadequately 
respond to or relapse during first-line 
TKI treatment may still be curable with a 
second-line TKI that retains efficacy53,54. 
Thus, the presence of resistance mutations 
within BCR–ABL does not eliminate the 
potential for CML to be cured, as long as 
therapeutics are available that overcome the 
resistance and can adequately inhibit BCR–
ABL kinase activity for a long enough period 
of time.

This paradigm, in which a cancer retains 
equivalent curability in the first-line and 
second-line settings, may be more broadly 
applicable to other cancers treated with 
targeted therapies. However, it may not 
apply to cancers treated with clastogenic 
chemotherapies, as these agents induce 
genetic diversity and thus may promote the 
development of subclones that intrinsically 
lack responsiveness to other therapeutics 
(for example, by genetic loss of genes 
encoding apoptosis effectors65).

cancers. For example, independent 
metastases from the same carcinoma can 
undergo divergent evolution that leads to 
differential therapeutic responses, and even 
primary solid tumours can have extensive 
geographic heterogeneity66–68. There is 
a widely held belief that haematological 
cancers may be less geographically 
heterogeneous than carcinomas, but this has 
not been systematically proved. The larger 
advantage for sampling MRD in patients 
with leukaemias and some lymphomas is 
that MRD cells can be isolated from the 
bone marrow. By contrast, the sites of MRD 
within a patient who underwent resection 
of his or her primary cancer are almost 
always unknown. Thus, two issues preclude 
MRD sampling for many patients with solid 
tumours: there is an inadequate signal:noise 
ratio for the detection of MRD by use of 
currently available imaging approaches, 
and biopsy of sites such as liver, bone, 
spleen and lung requires invasive sampling. 
The latter would have to be justified by 
improvements in outcome that come from 
therapeutic decisions based on analysis of 
the sampled material.

Assays that use circulating tumour cells 
(CTCs) and cell-free nucleic acids may 
be feasible for testing MRD in the future 
but are currently limited by the quantity 
of malignant material recovered by 

Approaches to characterize MRD
Biological and functional challenges. An 
optimal assay performed at the time of CR 
would not only predict therapeutic response 
but also identify relevant heterogeneity 
that is present within the patient’s MRD. It 
would utilize very small amounts of input 
material, generate easily interpretable data 
within a short period and require relatively 
little operator skill. Such an assay could be 
iteratively applied to assess MRD and to 
guide therapeutic selection (as in FIG. 1). 
This would be a transformative clinical 
advance for patients with persistent MRD if 
selective targeting of MRD either forestalled 
or completely obviated clinical relapse.

A major concern with characterizing 
MRD is that sampling from a single site 
could result in misrepresentation of 
the true heterogeneity in situ. To some 
extent, heterogeneity within MRD can be 
addressed by iterative sampling, testing 
and therapeutic targeting. When the MRD 
is then reassessed, subclones (or cellular 
contents derived from them) that were not 
effectively targeted based on the previous 
assessment should be enriched within the 
sampled population.

There are theoretical challenges to 
bioassay-based targeting of solid tumour 
MRD that suggest the primary focus for 
this strategy should be on haematological 

Box 1 | Nomenclature relevant to minimal residual disease

In many contexts where the term ‘minimal residual disease’ (MRD) has been applied, each of the 
three words is contestable. We have generated several acronyms that more precisely define cells 
and other matter that are currently classified as MRD or used as de facto evidence of MRD.

Minimal relapsable cancer (M‑REC). Cancer cells that are fully transformed and capable of 
proliferating into a diagnosable relapse. Thus, these cells have both genetic and functional 
properties consistent with malignancy.

Minimal non-relapsable cancer (MN‑REC). Cancer cells that are incapable of proliferating into a 
diagnosable relapse. These cells may have irreversibly differentiated beyond the ability to act as 
cancer stem cells, may have been damaged by chemotherapy, radiation or other treatment, or 
may otherwise lack the capacity to drive relapse (for example, owing to an inhospitable 
microenvironment).

Minimal residual precursors (MRPs). In contrast to M‑REC, these are non-fully transformed cells 
that harbour genetic or other alterations that are also present within the tumour cells. Examples 
include clonal haematopoiesis in patients who achieve complete remission after leukaemia 
treatment121 and dysplastic cells that persist after treatment for many types of localized 
carcinomas122–129.

Minimal residual nucleic acids (MRNAs). Detectable nucleic acids that suggest, but do not prove, 
the existence of M‑REC, MN‑REC and/or MRPs. These may be detected within biopsy samples or 
from compartments such as the bloodstream, bone marrow, stool or cerebrospinal fluid. They may 
indicate the persistence of MRPs or could represent nucleic acids that arose from dead or excised 
tumour cells that have not been fully degraded.

Minimal residual metabolites (MRMs). Metabolites that are similar to MRNAs but would include 
oncometabolites such as 2‑hydroxyglutarate130 as well as metabolites that are generated by 
malignant or pre-malignant cells and are present either at inappropriate concentrations or within 
inappropriate compartments.
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phlebotomy69–71. A more invasive and costly 
approach, such as apheresis, could sample 
litres of blood from a patient to access 
larger numbers of circulating malignant 
cells or other material72. Like invasive 
biopsies, an approach such as apheresis 
may be merited if therapeutic selection 
based on a predictive assay performed 
using that material considerably improved 
patient outcome. Alternatively, agents 
that interrupt tumour cell interactions 
with the microenvironment, such as those 
targeting CXC-chemokine receptor 4 
(CXCR4) or E‑selectin, could be used to 
transiently increase the number of CTCs 
in a patient with MRD73; importantly, 
concerns have been raised that this type 
of approach may increase metastasis74. 
Finally, one could imagine testing multiple 
different sites of MRD from a patient with 
micrometastases if technological advances 
allowed for identification of those sites (for 
example, with new imaging strategies) and 
minimally invasive sampling (for example, 
with microneedles).

The argument for functional assays. 
Recent advances in cell-free nucleic acid 
characterization have made it possible to 
make genotype-driven therapeutic selections 

cytometry can quantify over 40 parameters, 
including protein levels, post-translational 
modifications and proteolysis products, 
from millions of single cells within an 
individual sample81. Mass cytometry can 
reveal cell signalling programmes as well 
as markers of intercellular communication 
(for example, cytokines or growth factors) 
that reflect the surrounding environment. 
Single-cell RNA sequencing (scRNA-seq) 
is similarly capable of defining multiple 
aspects of the cell state as well as genotype82. 
Microfluidic approaches have now made 
it possible to conduct scRNA-seq or other 
sequencing platforms on thousands of cells 
at low cost83–85, revealing intratumoural 
heterogeneity in both malignant and 
non-malignant populations83,86,87. However, 
these vast insights into tumour biology 
have not thus far been translated into 
clinically relevant approaches for selecting 
therapeutics for an individual patient80.

The evolution of functional assays. 
Functional testing of therapeutic sensitivity 
of individual cancers initially followed 
similar paradigms that were overwhelmingly 
successful for determining antibiotic 
sensitivity in bacteria88–90. Tumour cells were 
plated in 2D culture ex vivo in the presence 

in some patients, such as those with 
EGFR-mutated lung cancer75–79. In tumours 
where a targeted agent is available and 
associated with genotype-specific activity 
(that is, the presence or absence of resistance 
mutations), sequencing of circulating 
tumour DNA could even be used to 
inform the selection of specific agents, as 
in CML. Unfortunately, nucleic acid-based 
biomarkers that predict sensitivity or 
resistance to cancer therapeutics are the 
exception rather than the rule80.

For the overwhelming majority of 
cytotoxic chemotherapies and many 
targeted agents, there are few if any genetic, 
transcriptional, proteomic, metabolomic 
or other biomarkers to predict the depth or 
duration of response. As a result, functional 
assays that directly measure phenotypic 
responses to single agents or therapeutic 
combinations are particularly attractive. 
We focus primarily on phenotypic assays, as 
they capture complex and multiparametric 
interactions to predict in vivo therapeutic 
efficacy. However, there are several 
transcriptional and proteomic assays 
that have the potential to define aspects 
of intratumoural biology and even link 
changes associated with drug exposure 
to clinical outcome. Among these, mass 
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Figure 2 | Current paradigm for management of MRD in patients with 
acute lymphoblastic leukaemia. Induction therapy for acute lymphoblas-
tic leukaemia induces morphologic remission (<5% blasts, complete remis-
sion) in most patients. Minimal residual disease (MRD), or small amounts of 
disease undetectable by standard morphological review, is often detectable 
by use of sensitive MRD-assessment techniques, such as flow cytometry and 
sequencing approaches. The current application of MRD testing is to guide 
the intensity of consolidation therapy. Patients who achieve undetectable 

or low MRD are assigned to lower-intensity therapy. Patients who have high 
levels of MRD are assigned to higher-intensity therapy. In each case, the 
intensity is based on predictions from prior studies of the lowest amount of 
therapy necessary to eradicate MRD. This probabilistic approach results in 
undertreatment and overtreatment of some patients. Each panel in the fig-
ure illustrates a hypothetical level of MRD in the absence of consolida-
tion therapy (blue line) and the same MRD optimally treated with 
consolidation (orange line).
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of potentially active therapeutics, and some 
marker of either survival or proliferation was 
measured. In contrast to antibiotic sensitivity 
testing, bulk assays for cancer therapeutic 
sensitivity were generally not useful for 
several reasons. First, extended culture of 
tumour cells is difficult, so comparisons 
between untreated and drug-treated cells 
are largely a ‘race to death’. Second, available 
assays required relatively robust laboratory 
capabilities within a short distance 
from the patient bedside, as extended 
transport further compromises tumour 
cell survival. Third, the prolonged culture 
necessary to readout survival or growth 
resulted in notable selection for cells with 
characteristics that favour in vitro survival. 
Finally, and importantly, these assays 
were primarily conducted in an era when 
cancer therapeutics were not very active 
against most solid tumours, so the chances 
of identifying a highly effective therapy 
(including combinations) was a priori low.

There are several strategies for 
overcoming issues related to selection in 2D 
culture. Multiple groups have established 
either organoids from individual patient 
tumours or patient-derived tumour 
xenografts (PDXs). Both strategies may 
capture relevant interactions that mimic the 
in situ microenvironment but also require 
extended propagation that allows for clonal 
selection and a temporal gap between the 
biopsy and the readout for drug efficacy91–94.

An alternative approach is to either 
eliminate or reduce the need for ex vivo 
propagation through the use of a rapid 
readout of single-cell treatment response. 
Several assays have been reported that 
can measure proteomic, transcriptional, 
functional or other readouts of drug 
response within cancer cells and could be 
tested on MRD. A non-exhaustive sampling 
is included in TABLE 1.

One promising approach for assaying the 
effects of multiple drugs on a single tumour 
specimen ex vivo is dynamic BH3 profiling 
(DBP). This assay quantifies treatment-
induced changes in net pro-apoptotic 
signalling within mitochondria95. In DBP, 
patient tumour cells are exposed to drugs 
for 16–24 hours ex vivo, permeabilized and 
exposed to pro-apoptotic, BH3‑domain-
containing peptides. The frequency of 
cells that undergo mitochondrial outer 
membrane permeabilization is measured 
to assess the extent to which tumour cells 
are primed for apoptosis. The difference 
between priming in the presence and 
absence of exposure to a therapy within the 
bulk tumour population is used to predict 

the effects of therapeutics when exposed to 
samples ex vivo100. Flow cytometry-based 
assays offer the added benefit that 105–106 
cells can be easily analysed from a single 
sample, which allows for the interrogation 
of MRD present at frequencies less than 1 in 
10,000 cells.

Together with colleagues at the 
Massachusetts Institute of Technology and 
the Dana-Farber Cancer Institute, we have 
been testing whether a measurement device 
for single cells known as the suspended 
microchannel resonator (SMR) can be 
applied to assess functional drug response 
in single cancer cells (FIG. 3). When an 
object denser than media passes through 
the SMR, the net increase in mass (that 
is, the buoyant mass of the object) lowers the 
resonant frequency. To measure the mass 
accumulation rate (MAR) of a cell, an array 
of SMRs are microfluidically connected 

whether the therapy will be effective in the 
patient96. DBP has been used to accurately 
predict the response of CML to imatinib 
therapy by use of bone marrow samples, 
the response of single-cell suspensions 
from ovarian cancer biopsies to carboplatin 
therapy, the response of ALL PDXs to E3 
ubiquitin-protein ligase MDM2 inhibition 
and in other settings95,97,98.

Although many drugs have yet to be 
tested using DBP, the assay is likely to 
be amenable to a wide range of targeted 
therapies that act through the intrinsic 
apoptotic pathway in tumour cells. Like 
2D culture, organoids and PDXs, DBP 
queries the treatment response of tumour 
cells in bulk rather than in individual cells, 
although advances in flow cytometry-based 
DBP may allow for its application to single 
cells99. Other approaches that utilize flow 
cytometry could also be applied to assay 

Table 1 | Formats for measuring single-cell response in MRD

Assay 
format*

Approach Pre-enrichment 
required

Destructive Refs

Functional

DBP Measures mitochondrial cytochrome 
C release after exposure to a drug and 
pro-apoptotic BH3 peptides

Dependent on 
MRD frequency

Yes 95–99

SMR‡ Defines mass accumulation rate of 
individual cells after exposure to drug

Yes No 101–103

Proteomics

Mass 
cytometry§

Measures markers of drug response, 
either specific to target or nonspecific 
markers (for example, markers of 
apoptosis)

Dependent on 
MRD frequency

Yes 81

Flow 
cytometry§

Same as mass cytometry Dependent on 
MRD frequency

Yes, if using 
intracellular 
markers

100

Microwell 
plates

Single cells are seeded into individual 
wells, and secretory, phenotypic or other 
markers of drug response are quantified, 
for example, by antibody detection

Yes Yes, if using 
intracellular 
markers

110,131

Transcriptomics

Single-cell 
RNA-seq

Transcriptome sequencing of 
drug-exposed cells to define cell state 
or programmes associated with drug 
response

Dependent on 
MRD frequency

Yes 82–87

Imaging

Optical 
microscopy‡

Cells are observed for morphological 
features or antibody-based markers of 
drug response

Yes No 106

The formats listed in the table are an incomplete list of example technologies. DBP, dynamic BH3 profiling; 
MRD, minimal residue disease; RNA-seq, RNA sequencing; SMR, suspended microchannel resonator. 
*Some assays could be used across the different categories (for example, aptamers could be used in 
microwell plates to detect RNA transcript abundance rather than proteins). Additional biophysical assays 
(for example, measuring deformability) have not been explored in MRD but may be feasible. ‡Some assays, 
such as microscopy and SMR, are likely to require pre-enrichment of tumour cells from MRD before 
employing the assay. §Some assays, such as flow cytometry and mass cytometry, will vary in the need for 
pre-enrichment based on the frequency of MRD in the starting population. While these assays could likely 
characterize MRD at frequencies of 1 in 1,000 to 1 in 10,000 cells, further technical innovation will be 
necessary for even lower frequencies.
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in series, with delay channels in between 
each cantilever. Passage through the delay 
channels provides the cell with time to gain 
or lose biomass before the next cantilever. 
After a cell exits a cantilever, other cells are 
free to enter it and be weighed. Over 100 
cells per hour can pass through the array 
in a queue, each being measured with a 
precision near 0.01% of the cell’s weight101,102. 
MAR is a measurement of cell growth that 
does not require proliferation. Thus, like 
DBP, the MAR assay can rapidly assess drug 
response whether that drug is applied in situ 
or ex vivo103.

and resistant cells to be interrogated 
by live-cell downstream assays such as 
scRNA-seq or DBP (FIG. 3b). Because these 
properties are measured for each single cell, 
clonal architectures based on therapeutic 
response can ultimately be established 
across each tumour sample by incorporating 
molecular and functional measurements 
from large numbers of cells. In settings of 
deep treatment response, pretreatment and 
MRD samples can be compared to define 
the effects of therapy on clonal architecture. 
We envision that these data could then be 
incorporated into mathematical models 
to design and optimize therapeutic 
approaches that address the heterogeneity 
within individual tumours that results in 
treatment failure.

There are multiple additional methods 
for measuring biophysical properties of 
single cells with high throughput that have 
not yet been fully exploited for assessing 
drug responses. For example, microscopy 
can quantify cell size and morphology105, 
and several different microfluidic 
approaches have been used to interrogate 
mechanical properties of single cells106–109. 
Label-independent techniques that exploit 
differences in the size, shape or rigidity of 
malignant versus non-malignant cells also 
exist but have not yet been fully exploited 
for identifying MRD cells.

Tumour cell enrichment and assay 
sensitivity. For most platforms listed in 
TABLE 1, tumour cells must be pre-enriched 
before assaying drug response, as the 
throughput is insufficient to capture 
an adequate number of malignant cells 
within a sample containing primarily 
non-malignant cells. Pre-enrichment 
typically involves targeting cell surface 
proteins by use of antibodies conjugated to 
magnetic beads or fluorescent molecules 
followed by either flow-associated 
cell sorting or positive selection with 
magnetic beads110–113.

Even with advances in tumour cell 
enrichment, there is a minimum threshold 
for involvement of MRD below which an 
assay is simply not feasible. For example, 
a recent study on MRD in multiple 
myeloma used next-generation flow 
cytometry on bone marrow to identify 
approximately two MRD cells per million114. 
Although identification of MRD at this 
frequency is now possible, sorting and 
then drug testing these cells are unlikely to 
be possible. However, testing frequencies 
of MRD between 1 in 10,000 and 1 in 
1,000 cells should be feasible based on 

We have demonstrated that the MAR 
assay can define the drug sensitivity or 
resistance of glioblastoma and B cell ALL 
cells to targeted agents103. For multiple 
myeloma, we have recently demonstrated 
that the MAR assay accurately and rapidly 
defines therapeutic susceptibility in human 
multiple myeloma cell lines. In a study 
of six patients who responded to therapy 
that included the proteasome inhibitor 
bortezomib and three who did not, MAR 
correctly predicted response with 100% 
accuracy104. Importantly, the MAR assay is 
nondestructive, which allows both sensitive 

Figure 3 | Suspended microchannel resonator and workflow for the mass accumulation rate 
assay. a | An example of data collection by use of the suspended microchannel resonator (SMR) is 
shown, which is analogous to data published previously in Stevens et al.103. Imatinib was added to 
cultured BCR–ABL-expressing BaF3 cells at T = 0, and the culture was continuously sampled using a 
serial SMR101 for 8 hours. Each cell takes ~20 minutes to pass through the 12 serial SMRs (sSMRs) 
(black = first SMR, red = last SMR), and the slope of the resulting growth trajectory is the mass accumu-
lation rate (MAR). Initially, the trajectories have a positive slope, but after 6 hours, the slope approaches 
zero. Although the imatinib-treated cells remained viable for >36 hours before measurable induction 
of apoptosis, the MAR decreases in just a few hours. b | Functional properties, such as MAR, that are 
rapidly affected by effective therapeutics and precede longer-term phenotypes (for example, loss of 
viability) can be linked to molecular properties by isolating individual cells in wells and performing 
downstream assays. In this example, MAR is used to identify responding (sensitive) and nonresponding 
(resistant) cells before single-cell RNA sequencing (scRNA-seq) in order to search for programmes and 
cell states associated with resistance. Part a courtesy of N. Cermak.
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the ability to sequence individual cells 
present at even lower frequencies115. 
In a sample of 106–107 cells, this would 
result in hundreds to thousands of MRD 
cells that could be interrogated for drug 
response. To evaluate a panel of drugs 
with this number of total MRD cells, the 
platforms listed in TABLE 1 will require 
new and innovative approaches for cell 
handling. Sampling this many tumour 
cells from patients in CR after treatment of 
solid tumours may be particularly difficult, 
although it is likely to be feasible by using 
carcinoma and sarcoma resections after 
neoadjuvant therapy116–118.

The future of MRD-guided therapy
It remains to be determined whether 
applying any approach to MRD samples 
can lead to the selection of treatments that 
extend the duration of CR over current 
empirical approaches. However, it seems 
intuitive that a greater appreciation of 
heterogeneity in the response of individual 
MRD cells to a therapy (including 
combinations) can inform therapeutic 
selection, provided therapies exist that 
are capable of overcoming the resistance. 
It also seems intuitive that patients will 
accept more invasive sampling, even 
multiple biopsies, at the time of MRD 
if that sampling has been proved to 
inform therapeutic selection and confer 
meaningful benefit.

As newer and more effective agents 
are introduced for patients with cancer, 
we can now envision preventing disease 
relapse through the rational targeting of 
MRD. The achievement of that ambitious 
goal will require carefully designed trials 
in selected settings that apply novel 
approaches for sampling and testing 
live MRD cells. One can envision two 
paradigms for targeting MRD. In the first, 
patients would be treated until MRD is no 
longer detectable and then given drug-free 
holidays until MRD relapses (as in FIG. 1). 
At that time, MRD would be assessed for 
therapeutic sensitivity and the appropriate 
treatment initiated (or re-initiated). This 
is a form of preemptive therapy similar 
to the suppression of viral reactivation 
among immunocompromised patients119. 
In the second paradigm, treatment would 
continue either indefinitely (akin to 
secondary prophylaxis of infections) or 
with curative intent. The ability to cure 
a tumour will depend on several factors, 
most notably the efficacy and lack of 
cross-resistance among therapeutics for 
that disease.
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