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Abstract—We have micromachined a mechanical sensor that
uses interferometry to detect the differential and absolute deflec-
tions of two adjacent cantilevers. The overall geometry of the de-
vice allows simple fluidic delivery to each cantilever to immobilize
molecules for biological and chemical detection. We show that dif-
ferential sensing is 50 times less affected by ambient temperature
changes than the absolute, thus enabling a more reliable differenti-
ation between specific cantilever bending and background effects.
We describe the fabrication process and show results related to the
dynamic characterization of the device as a differential sensor. The
root-mean-squared (rms) sensor noise in water and air is 1 nm
over the frequency range of 0.4–40 Hz. We also find that in air, the
deflection resolution is limited only by the cantilever’s thermome-
chanical noise level of 0.008�A Hz1 2 over the frequency range of
40–1000 Hz. [781]

Index Terms—AFM technology, BioMEMS, biosensor, chem-
ical–biological functionalization, diffraction, interdigitated, silicon
nitride.

I. INTRODUCTION

T HE use of micromachined cantilevers for detection of
chemical and biological interactions of molecules has

been investigated in recent years. It has been shown that
intermolecular forces resulting from binding of molecules can
bend a flexible micromachined cantilever [1]–[6].
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Fritz et al. used two adjacent micromachined cantilevers to
detect DNA hybridization [7]. Commercially available pipettes
were used to functionalize the surfaces of the cantilevers with
DNA oligonucleotides of different sequences. DNA hybridiza-
tion on one of the cantilevers and not on the other caused a
differential bending, i.e., the bending of one cantilever relative
to the other. The bending was determined by the optical lever
method whereby a laser beam was focused on the terminus of
each cantilever and the location of the reflected beam was mea-
sured with a position-sensitive photodetector. An important re-
sult of this study was that taking the difference of the deflection
signals from the two identical cantilevers significantly reduced
the effect of temperature and optical index changes that occur in
solution. As a result, only the bending induced by the biomolec-
ular interactions of the molecules was revealed in the differential
signal.

In bending experiments with single cantilevers [1]–[6], [12],
the ambient temperature has to be controlled precisely during
the experiment to avoid bending due to the temperature sensi-
tivity of the cantilevers. In addition, controls to determine the
specificity of the bending have to be done sequentially using
different cantilevers. This can introduce additional uncertainties
due to variations in experimental conditions.

In this paper, we present a sensor that inherently detects the
differential bending of two adjacent cantilevers. This eliminates
the need for electronic subtraction of the signals downstream,
and also relaxes the alignment tolerances of the components
used in the optical lever method. In order to achieve direct me-
chanical subtraction of the deflection signals, we used interdig-
itated (ID) fingers that formed a diffraction grating between the
two adjacent cantilevers. The sensor also has ID fingers that
enable detecting the absolute bending of each cantilever. Man-
alis et al. introduced the use of ID fingers for atomic force mi-
croscopy and showed that subangstrom level resolution can be
achieved [8]. Here, we describe how this concept is incorporated
with a device geometry that allows fluidic delivery to each can-
tilever surface using commercially available pipettes. We also
characterize the device as a differential sensor in terms of sim-
ilarity of the adjacent cantilevers, the response to background
noise, and the deflection resolution.

II. DEVICE DESIGN AND FABRICATION

A schematic of the device illustrating the optical detection
and actuation is shown in Fig. 1(a). The device consists of two
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Fig. 1. (a) Device architecture, optical detection, and actuation schematic. (b)
Pattern of diffraction modes and their dependence on the relative position of the
interdigitated finger sets.

adjacent silicon nitride cantilevers (500m 100 m 1 m)
connected to the substrate with L-shaped silicon nitride stiff sup-
ports. The ID fingers at the termini of the cantilevers enable de-
flection sensing. Each cantilever has a thin layer of gold on one
surface to enable covalent immobilization of bio-molecules [3],
[5], [7], [9], [10]. Furthermore, the difference in thermal expan-
sion coefficients of gold and silicon nitride causes a bimorph
effect, which enables actuation of the cantilevers by heating.

The ID fingers between the two cantilevers are used to de-
tect the differential bending, whereas the ID fingers between
the cantilevers and the supports enable detection of the abso-
lute bending of each cantilever. When the fingers are illumi-
nated with a laser, the reflected light produces a diffraction pat-
tern composed of several modes [see Fig. 1(b)]. The intensities
of these modes depend on the relative out-of-plane distance be-
tween the ID finger sets. When the two finger sets are perfectly
aligned, the even numbered modes have maximum intensity,
whereas the odd numbered modes are dim. The opposite oc-
curs when the distance between the two sets is an odd multiple
of a quarter of the illumination wavelength . An actuation
laser allows the position of a single cantilever to be controlled,
or biased, by locally heating its base and causing it to bend due
to the bimorph effect.

Fig. 2 shows scanning electron micrographs of the structure.
The L-shaped supports have a grid structure that was formed
simultaneously with the flexible cantilevers. The grid structure
is four times thicker than the 1-m-thick flexible cantilevers
[see Fig. 2(b) and (c)]. This ensures minimal bending of the
support structure.

Fig. 2. Scanning electron micrographs of the sensor. (a) Entire sensor. (b)
Support structure-cantilever interface. (c) Cross section of support structure.

Fig. 3(a) illustrates the main steps of the fabrication process.
First, the grid pattern of the support structures was defined using
photolithography on a four-inch, 500-m-thick silicon
wafer. Then, 4 m deep trenches were formed by deep reactive
ion etching (DRIE) of silicon in a time-multiplexed SFC F
plasma for 4 min. The photoresist was removed using a piranha
clean (1: 3 HO –H SO ). In order to remove the passivation
residue C F from the DRIE process, a thin layer of oxide was
grown [not shown in Fig. 3(a)] at 1100C for 30 min, and then
completely stripped using a buffered oxide etch. Next, the wafer
was coated conformally with 1m low stress silicon-rich (10:1)
silicon nitride using low-pressure chemical vapor deposition to
form the 4- m-thick support structure and the 1-m-thick can-
tilever material simultaneously. The individual dies were de-
fined by backside photolithography, followed by a plasma etch
of the nitride in CF. Again, the photoresist was removed using
a piranha clean. The last photolithography step was done to pat-
tern the devices on the front side which was followed by the
plasma etch of the nitride in CF. After removing the photore-
sist by using piranha, the silicon-nitride devices were released
with a wet etch of the bulk silicon. The etch was carried out in a
KOH solution (25% by volume) at 65C over a period of 17 h.
Prior to gold deposition, a single device was cleaned using pi-
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Fig. 3. Fabrication process. (a) Device cross section after each major
fabrication step. From top to bottom: RCA cleaned 500�m h100i silicon
wafer, DRIE formed trenches for support, low stress silicon-nitride deposition,
backside patterning (photolithography and plasma etch) of silicon nitride, front
side patterning (photolithography and plasma etch) of silicon nitride, Release
with KOH etch of bulk silicon, e-beam deposition of gold. (b) Cross section of
cantilever-support interface after gold deposition.

ranha (1:1 HO –H SO ) in order to remove organics. Finally,
200 of gold (with a 10 Ti adhesion layer) was deposited by
electron-beam evaporation onto the bottom surface of the de-
vice. Fig. 3(b) shows a schematic of the completed cantilever
cross section.

The overall geometry of the device enables simple fluidic de-
livery with commercially available pipettes. Fig. 4 shows inser-
tion of a cantilever into a pipette. This method allows chemical
functionalization of each cantilever surface individually, facili-
tating the device’s use as a bio/chemical sensor.

III. D EVICE CHARACTERIZATION

The devices were tested by detecting the absolute and
relative bending of the cantilevers in response to temperature
changes. First, calibration was performed by measuring the
intensity of a diffraction mode of the differential ID finger
set. A 670-nm-wavelength laser diode (Hitachi HL6501MG)
was used for actuation, and its power output was gradually

Fig. 4. Insertion of a cantilever into a commercially available glass pipette. (a)
Before insertion. (b) After insertion.

increased from 1.5 to 18 mW to cause bending. The diffraction
mode intensity was measured with a 3 mW, 635 nm wavelength
laser diode (Sanyo DL3148-021) and a standard silicon pho-
todiode (Thorlabs FDS100) through a notch filter. The output
of the photodiode was converted to voltage using a current
amplifier (Keithley 428). Data acquisition was carried out using
a National Instruments Labview interface.

Fig. 5 shows the measured first diffraction mode intensity as
a function of the relative deflection between the two cantilevers
caused by heating one of the cantilevers. Also shown is the the-
oretical dependence of the first diffraction mode on relative de-
flection as predicted by (1) [11]

(1)

Here, represents the relative displacement between the two
cantilevers, and the illumination wavelength (635 nm). De-
flection in nanometers was calibrated by using (1) and setting
the distance between a minimum and a maximum to. Since
the intensity is periodic in and the initial distance between the
two cantilevers is not known, the zero point of the abscissa in
Fig. 5 was set arbitrarily. We suspect that the deviation from the-
oretical behavior at low deflections results from nonlinearities
exhibited by the laser source when operated at low power.

The optimum operation point is the point of maximum slope
of either curve shown in Fig. 5 120 nm. At this bias point,
the intensity of the diffraction mode is most sensitive to small
changes in the relative distance of the ID finger sets. Most re-
ported cantilever deflections resulting from biological reactions
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Fig. 5. Differential bending response in water as the actuation laser gradually
heats one of the cantilevers. Measured is the first diffraction mode intensity
detected by the photodiode and Theoretical is the behavior predicted by (1).

are much smaller than the maximum deflection shown in Fig. 5.
For instance, Fritzet al. report a differential deflection caused
by DNA hybridization to be 10 nm [7].

For an ideal differential sensor, the two adjacent cantilevers
should be identical. However, slight changes in cantilever length
during photolithography, or nonuniformities that occur during
the deposition of the nitride and the gold could cause variations
in the mechanical properties of the two cantilevers. We inves-
tigated the similarity of the two cantilevers by measuring their
resonance frequencies. We measured the resonance frequency
of each cantilever by modulating the actuation laser with a sine
wave and gradually varying the frequency. The measurement
was done in air to achieve large deflection at resonance. The de-
flection was measured with the absolute ID fingers. Fig. 6 shows
that the resonance frequencies of the two cantilevers4.4 kHz
differ by only 85 Hz, which corresponds to a variation of about
2%. This is in good agreement with results shown in litera-
ture [7], and shows that the device can be used as a differential
sensor.

To assess the effectiveness of differential sensing, we com-
pared the differential and the absolute cantilever bending in re-
sponse to ambient temperature changes, in the absence of the
actuation laser. The device was placed in a closed 5-mL fluidic
cell machined out of acrylic. Cold water (4C) was injected
into the cell. As the injected water warmed up to room temper-
ature (21 C), the bending of a single cantilever was detected
using the absolute ID fingers. The experiment was immediately
repeated with the differential ID fingers to measure the differen-
tial bending. Fig. 7 shows the absolute and the differential can-
tilever bending as a function of time as the injected water warms
up to room temperature. Since the injected water warms up ex-
ponentially in time, the distance between the peaks increases.

From Fig. 7, it is clear that the differential measurement is
much less affected by temperature changes when compared with
the absolute one. Since both cantilevers have the same thermal
response, detecting the differential bending can easily reduce
the effect of temperature fluctuations, and provide a more re-
liable detection of specific bending caused by a bio/chemical

Fig. 6. RMS vibration amplitude of each cantilever versus the drive frequency
of the actuation laser. RMS amplitudes were obtained sequentially in air by
measuring the first diffraction mode intensity from the absolute interdigitated
finger sets.

Fig. 7. Absolute deflection of one cantilever and differential deflection
between two cantilevers in water, in response to ambient temperature change.
At time t = 0, cold water (4 C) was injected into a 5-mL fluidic cell, and
allowed to warm up to room temperature (21C).

reaction. We estimate from the maxima of the slopes of the two
curves that the differential measurement is approximately 50
times less sensitive to temperature changes than the absolute
measurement. The temperature sensitivity of a cantilever with
the material and geometric properties reported here is calculated
as 70 nm C [12]. Accordingly, the differential thermal sen-
sitivity is calculated as 1.4 nm C. In a system using a single
cantilever, bending induced by a 1C temperature change could
easily exceed that caused by a typical biological reaction.

Finally, we measured the sensor response to background
noise (in the absence of the actuation laser). Fig. 8 shows an
overlay of the measured spectrum in air and the magnitude
of the frequency response of an ideal second-order harmonic
oscillator predicted by (2) [13]

(2)
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Fig. 8. Power spectral density of the differential cantilever deflection in air
(Measured). Second-order fit is the frequency response of an ideal harmonic
oscillator that has the same natural frequency, quality factor, and stiffness as a
cantilever.

Here, , , and represent the quality factor, stiffness and
the fundamental frequency of the cantilever respectively.,

, , stand for the Boltzmann constant, room temperature, and
excitation frequency, respectively. Equation (2) assumes that the
low-frequency response of the cantilever is limited only by its
thermomechanical noise level predicted by (3) [13]

(3)

The measured spectrum, as illustrated in Fig. 8 has flicker
noise combined with second-order dynamics. Fitting the
second-order dynamics of the measured spectrum to (2) for

rad/s reveals: and N/m.
The theoretical stiffness of the cantilever based on dimensions
and material properties is N/m [14]. The difference
between the two stiffness values could result either from the de-
viation of the actual material properties from the tabulated ones
[15] or from variations in cantilever length and thickness during
fabrication. The fit of (2) shows that the measured response
over the frequency range 40–1000 Hz is the thermomechanical
noise level of the cantilever 0.008 Hz . Hence, for
applications in this frequency range, only the thermomechan-
ical noise limits the sensitivity. For frequencies lower than
40 Hz, resolution is dictated by flicker noise. Integration of
the measured frequency spectrum in Fig. 8 and several others
measured in air and in water (data not shown), over the range
0.4–40 Hz, reveals an rms noise level of 1 nm, which compares
well with the rms noise level of the response in Fig. 71 nm .
This noise floor is at least an order of magnitude less than
many reported bending values [5], [7], [9] caused by various
bio/chemical reactions.

IV. CONCLUSION

We demonstrated the fabrication and characterization of a
cantilever-based interferometric sensor that enables direct de-
tection of differential deflection. Interferometric nature of the

detection allows calibration of the displacement response only
by knowing the illumination wavelength. The structure allows
simple fluidic delivery onto cantilevers for chemical functional-
ization. The device was characterized by measuring the absolute
and the differential cantilever bending induced by the bimorph
effect, in response to both localized and ambient temperature
changes. The similarity between the two adjacent cantilevers is
well suited to enable the use of the device as a differential sensor.
We showed that the differential sensing significantly reduces the
effect of temperature changes in the background, enabling ac-
curate measurement of specific sensor deflection. We anticipate
that this sensor will be useful for investigating chemical and bi-
ological interactions that occur on cantilever surfaces, as well
as photothermal spectroscopy.
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