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SUMMARY  34 

Efforts to cure BCR::ABL1 B cell acute lymphoblastic leukemia (Ph+ ALL) solely through 35 

inhibition of ABL1 kinase activity have thus far been insufficient despite the availability of tyrosine 36 

kinase inhibitors (TKIs) with broad activity against resistance mutants. The mechanisms that 37 

drive persistence within minimal residual disease (MRD) remain poorly understood and therefore 38 

untargeted. Utilizing 13 patient-derived xenograft (PDX) models and clinical trial specimens of 39 

Ph+ ALL, we examined how genetic and transcriptional features co-evolve to drive progression 40 

during prolonged TKI response. Our work reveals a landscape of cooperative mutational and 41 

transcriptional escape mechanisms that differ from those causing resistance to first generation 42 

TKIs. By analyzing MRD during remission, we show that the same resistance mutation can either 43 

increase or decrease cellular fitness depending on transcriptional state. We further demonstrate 44 

that directly targeting transcriptional state-associated vulnerabilities at MRD can overcome 45 

BCR::ABL1 independence, suggesting a new paradigm for rationally eradicating MRD prior to 46 

relapse. Finally, we illustrate how cell mass measurements of leukemia cells can be used to 47 

rapidly monitor dominant transcriptional features of Ph+ ALL to help rationally guide therapeutic 48 

selection from low-input samples. 49 

 50 

KEYWORDS:  51 

Cell State, Mutations, Ph+ B cell acute lymphoblastic leukemia, Minimal Residual Disease, 52 
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 54 

HIGHLIGHTS: 55 

• Relapse after remission on TKI can harbor mutations in ABL1, RAS, or neither 56 

• Mutations and development-like cell state dictate fitness in residual disease 57 

• Co-targeting cell state and ABL1 markedly reduces MRD 58 

• Biophysical measurements provide an integrative, rapid measurement of cell state  59 
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INTRODUCTION 60 

A large fraction of patients with cancer achieve complete remission at some point during their 61 

course of therapy, either through surgery, chemotherapy, radiation, or a combination thereof. 62 

Nevertheless, many of these patients relapse or progress owing to a small pool of remaining 63 

cancer cells commonly referred to as minimal residual disease (MRD). This is even true for 64 

cancers with clear, targetable oncogene dependencies such as BCR::ABL1-rearranged B cell 65 

acute lymphoblastic leukemia (Ph+ ALL). Despite highly effective tyrosine kinase inhibitors (TKI) 66 

with potent activity against multiple resistance-conferring point mutations in BCR::ABL1, relapse 67 

during single-agent treatment is nearly universal.1,2,3 Unfortunately, accumulating evidence casts 68 

doubt on the potential for up-front combinations of next-generation TKIs to fully overcome 69 

subclonal heterogeneity and thereby eradicate MRD.4  70 

 While most patients with BCR::ABL1-driven disease relapse with kinase domain 71 

mutations, 30-40% of patients progress with BCR::ABL1-independent mechanisms that are 72 

poorly understood.5 Previous studies have identified developmental heterogeneity across ALL,6,7 73 

as well as in Ph+ ALL specifically.8,9 This developmental heterogeneity has also been linked to 74 

treatment response for multiple classes of inhibitors.6,7,10 Recent work specifically in Ph+ ALL 75 

examined developmental subtypes that align with earlier (Early-Pro) and later developmental 76 

(Late-Pro) B cell features, finding that the former was associated with poor overall survival upon 77 

treatment with the first-generation TKI imatinib.8 Commitment to earlier or later stages of 78 

development has been associated with cooperating alterations in lineage-defining transcription 79 

factors (EBF1 deletion or deletions in IKZF1, PAX5, and CDKN2A, respectively), suggesting that 80 

developmental state adherence – and its associated therapeutic response – may be mutationally 81 

driven and static upon leukemic transformation.8,9 However, other studies have nominated the 82 

potential for a leukemia’s dominant developmental states to shift in response to therapeutic 83 

pressure. Illustratively, non-mutational mechanisms of chemotherapy resistance have been 84 

observed in ALL patient-derived xenografts (PDXs), whereby leukemia cells transiently adopt a 85 

dormant, stem-like state at MRD;11 others have demonstrated post-treatment shifts in the 86 

abundance of dormant subpopulations mimicking earlier developmental stages.7 It has also been 87 

suggested that TKI-resistant Ph+ ALL cells in a later developmental state proliferate by activating 88 

signaling that typically occurs downstream of the pre-B cell receptor (pre-BCR), despite the 89 

absence of a functionally expressed pre-BCR in Ph+ ALL.10,12 It remains unclear which attributes 90 

allow for persistence during remission and if mutational or developmental phenotypes are the 91 

dominant drivers of resistance.  92 
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 Accordingly, resistance to ABL1 TKIs is multifactorial and extends beyond ABL1 93 

resistance mutations, suggesting that informed strategies to convert deep remissions into cures 94 

may require incorporating orthogonal measurements of the non-genetic determinants of cellular 95 

state (e.g. via single-cell transcriptomics).13,14,15 However, there are limited studies describing 96 

how mutations participate (or clash) with these additional cellular features to drive persistence 97 

and clonal expansion under TKI pressure. Though recent evidence from our group and others 98 

indicates that some mutations are enriched in specific transcriptional backgrounds,10,16,17,18,19 the 99 

relative importance of mutational and transcriptional drivers to MRD persistence and relapse is 100 

not known. Furthermore, there are significant technical challenges associated with isolating and 101 

profiling rare residual cells that have limited their characterization largely to mutational profiling 102 

– a problem affecting essentially all cancer types.13,20,21 While MRD enumeration and mutational 103 

monitoring have been used to some clinical benefit,22,23,24 the translational utility of understanding 104 

non-mutational attributes from these rare cells has yet to be demonstrated.21 These constraints, 105 

coupled with the heterogeneity among MRD phenotypes both within and between patients, have 106 

historically made it difficult to nominate specific therapeutic strategies to combat MRD. We and 107 

others previously proposed that direct interrogation of MRD cells to identify dependencies for 108 

individual patients could offer clinical benefit if approaches existed to define those dependences 109 

in “real-time”.21,25 This would require a rapid strategy applicable to individual cells that could 110 

distinguish patients most likely to respond to one of several available therapeutic options.  111 

  Here, to better understand how both mutational and transcriptional variation coordinate 112 

to drive relapse within MRD, we defined the biology of Ph+ ALL cells at different stages of 113 

treatment and across a diversity of models and human patients. We reveal unique and targetable 114 

characteristics of Ph+ ALL MRD and nominate combination strategies to eradicate residual 115 

disease. 116 

 117 

RESULTS 118 

Modeling disease kinetics in response to combination TKI in Ph+ ALL PDX models 119 

Although treatment with allosteric BCR::ABL1 inhibitors drives deep remissions in patients, 120 

nearly all will relapse if not consolidated with allogeneic stem cell transplantation.  The recent 121 

development of asciminib (ABL001), an allosteric inhibitor of BCR::ABL1,26 created the first 122 

opportunity to address whether dual inhibition of BCR::ABL1 could eradicate Ph+ leukemias 123 

(Figure 1A). We combined orthosteric (ponatinib; 40 mg/kg/day) and allosteric (asciminib; 30 124 

mg/kg/day) inhibitors in a diverse cohort of Ph+ ALL PDX models (n=13 models;27 190 mice 125 

total) to assess how pre-existing clinical and molecular features would dictate response to 126 
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sustained oncogene withdrawal within a statistically powered, phase II-like preclinical trial 127 

(Figures 1A & 1B; see Methods and Tables S1 & S2). All mice receiving ponatinib or 128 

combination therapy, and 92% of subjects receiving asciminib monotherapy who survived 129 

beyond one week achieved complete remission (CR), corroborating the dependence of these 130 

leukemias on BCR::ABL1 (Figures S1A & S1B). The durations of remission with ponatinib-131 

based regimens exceeded those of asciminib monotherapy, but we observed no difference 132 

between the combination and ponatinib monotherapy arms (p=0.70; Figures 1C & S1C). 133 

Notably, survival outcomes between mice on each treatment arm did not correlate with PDX line 134 

characteristics associated with inferior treatment response in other contexts, such as increased 135 

prior lines of therapy,28 IKZF1 deletion,29 and pre-existing ABL1 resistance mutations (Figure 136 

S1D).2,30 All mice were ultimately euthanized, either for disease progression or clinical toxicity.  137 

Even the 7 mice euthanized for clinical toxicity after achieving a durable response – three of 138 

whom maintained CR for >12 months on study (Figure S1B) – harbored residual ALL in the 139 

bone marrow and/or spleen when sacrificed. These data demonstrate that while single-agent 140 

ponatinib and combination therapy confer deep and prolonged clinical remissions, BCR::ABL1 141 

inhibition alone was insufficient to fully eradicate human leukemias in vivo. 142 

 143 

Divergent mutational patterns upon oncogene inhibition in Ph+ B-ALL 144 

To chart landscapes of genetic resistance to single agent and combination TKI in Ph+ ALL, we 145 

sequenced 142 PDX samples (74 trial and 68 other TKI-treated leukemias) and examined 146 

patterns of acquisition within known driver mutations in ALL across multiple phases of treatment 147 

(Figure S2A; Table S3; see Methods). In general, alterations in ABL1 or RAS pathway genes 148 

consistently emerged upon therapeutic pressure compared to mutations affecting B cell survival, 149 

lineage commitment, or cell cycle control (Figures S2A & S2B). Of relapsed leukemias, 35% 150 

harbored mutations in BCR::ABL1, frequently compound mutations involving T315I plus at least 151 

one other high-level resistance mutation (e.g., Y253H, F311L, F359V) or an activating mutation 152 

in STAT5A (collectively termed ‘ABL pathway’ mutations). A separate 24% relapsed with 153 

activating mutations in RAS pathway genes – specifically KRAS, NRAS, BRAF, and/or PTPN11 154 

– representing emergent alternate pathway utilization in these oncogene-addicted leukemias 155 

(Figures 1D & S2C). Acquisition of driver pathway mutations was influenced by treatment arm 156 

– mice treated with asciminib predominantly acquired ABL pathway mutations at relapse, mice 157 

treated with ponatinib predominantly acquired RAS pathway mutations, and mice on the dual-158 

treatment arm acquired mutations on either ABL or RAS pathways (Figure S2B). Samples 159 

harboring RAS pathway mutations were mutually exclusive with those involving ABL pathway 160 
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mutations within each PDX line at both pretreatment and progression time points (Figure 1E). 161 

The remaining tumors (41%) harbored no driver mutations in either ABL or RAS pathway genes, 162 

and the majority of these (74%) had no apparent genetic lesions explaining phenotypic 163 

resistance by whole exome sequencing (Figures 1D, S2A, & S2C). These data suggest three 164 

recurrent patterns for resistance whereby leukemias progress on therapy with either ABL 165 

pathway, RAS pathway, or no discernible gain-of-function mutations.  166 

 167 

Ph+ ALL leukemic cells are defined by hybrid developmental states 168 

Given the lack of discernible mutation-driven resistance in a substantial fraction of our cohort 169 

(Figures 1D & S2A), we hypothesized that resistance to single-agent or combination TKI in Ph+ 170 

ALL may be understood best by characterizing both mutational and transcriptional state 171 

heterogeneity. To this end, we applied single-cell RNA-sequencing (scRNA-seq) to define 172 

transcriptional states in Ph+ ALL and identify leukemic phenotypes associated with progression. 173 

Using Seq-Well S3,31 we generated a dataset of 42,667 single-cell transcriptomes from 52 174 

samples spanning 11 PDX lines from our phase II-like pre-clinical trial and 5 patients on a clinical 175 

trial testing dasatinib (a second-generation orthosteric BCR::ABL1 inhibitor) plus asciminib for 176 

previously untreated Ph+ ALL (Figure 2A; NCT02081378; see Methods). We then performed 177 

consensus non-negative matrix factorization (cNMF) over each leukemia in this dataset to 178 

identify intratumoral gene expression programs (GEPs; Methods). Hierarchical clustering of the 179 

126 GEPs defined across individual leukemias revealed 7 shared patterns (meta-GEPs, or 180 

“mGEPs”) of covarying gene programming that were present in at least 8 samples (Figures 2B, 181 

2C & S3A; Table S4). Two mGEPs were defined by genes associated with active stages of the 182 

cell cycle (e.g., CENPF, MKI67, MCM6, E2F2) and another mGEP specifically associated with 183 

MYC activity (e.g., HSP90AB1, NME1). The remaining four mGEPs associated with various 184 

stages of B cell development, either containing Pro-B cell genes (e.g., DNTT, CSGALNACT1), 185 

genes associated with later stages of B cell development — i.e., Pre-BII (e.g., CD38, IRF4), and 186 

Immature B (e.g., CD79A, HLA-DPB1) – or progenitor-associated genes co-expressed with 187 

Immature B genes (e.g., CD44, CSF1R and HLA-DQA1, IRF8). These data suggest that aspects 188 

of normal B cell development are captured as major axes of intratumoral transcriptional variation 189 

in Ph+ ALL. 190 

In several cases, genes defining multiple B lineage developmental stages were enriched 191 

in the same GEP and co-expressed within individual leukemia cells (Figures S3A & S3B).7,32 192 

We next sought to better understand these stage-specific “hybrid” expression patterns by 193 

utilizing a supervised machine learning approach to resolve the relationship between leukemia 194 
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cells and nonmalignant B cell development. To enable this comparison, we first generated a 195 

reference dataset of human hematopoiesis from the bone marrow aspirates of healthy donors 196 

(n=7), profiling both sorted and unsorted fractions to ensure the proper B cell developmental 197 

populations were captured (Figures S4A & S4B; see Methods). By performing iterative 198 

clustering, we identified 13 cell types spanning the HSC progenitor, myeloid, erythroid, and 199 

lymphoid lineages (n = 13,643 cells; Figures S4C & S4D); each cell type population contained 200 

cells from at least 6 of 7 donors (Figures S4E & S4F). To enable leukemic cell reference 201 

mapping and comparison, we trained a random-forest (RF) classifier on the cell type-labeled 202 

reference scRNA-seq dataset using 10-fold cross-validation (Figures 2D & S5A; see Methods). 203 

We ensured this model was cueing on biologically-relevant expression patterns by using 204 

permutation tests to identify the top 200 features needed to accurately classify single-cell 205 

transcriptomes, as well as testing its accuracy on an external scRNA-seq dataset (Figures S5B 206 

& S5C).16 We then assigned individual B-ALL cells to their most likely developmental state using 207 

our RF classifier (Figure 2D). Across all malignant cells, the RF model assigned highest 208 

classification probabilities for the Pro-B cell type, followed by Pre-BI, Pre-BII, HSC, and 209 

Immature B cell types (Figures 2E & 2F); 1% of leukemia cells that classified into non-B lineage 210 

cell types, such as T cells, were poor quality and removed from downstream analyses (Figure 211 

S5D). 212 

 Corroborating our observations with NMF, marker genes that were restricted to individual 213 

stages of B cell development in healthy cells were routinely co-expressed in leukemia cells 214 

(Figure 2G).  For example, within leukemic cells classified as Pro-B, we observed a dominant 215 

secondary RF classification probability for an earlier (HSC) or later (Pre-BI, Pre-BII, Immature 216 

B) stage of B cell development. We therefore characterized the transcriptional heterogeneity in 217 

Ph+ ALL as a continuum of hybrid states according to their non-Pro-B RF classification 218 

probability (Figure 2H). This revealed transcriptionally hybrid populations with underlying ProB-219 

like gene-expression, co-expressed with either progenitor-like genes (HSC-hyb) or genes 220 

implicated in later developmental phenotypes (PreB-hyb or ImmatureB-hyb) (Figures S6A-C). 221 

Genes correlated with these prediction probabilities reflected markers of earlier and later stages 222 

of B cell development (Figures S5E & S6A; Table S5), and largely agreed with our unbiased 223 

NMF results (Figures S3A & S3C). All three hybrid populations were characterized by predicted 224 

utilization of canonical transcription factors (TFs) active in the healthy reference cell subsets 225 

(e.g., CREB1, MYC in HSC-hyb; E2F2, FOXM1 in PreB-hyb; IRF4, FOXO3, CIITA in ImmatureB-226 

hyb), as well as aberrant TF activity (e.g., IRF1, STAT1 in ImmatureB-hyb; Figure S6D; see 227 

Methods). Thus, anomalous co-expression of stage-associated genes in both primary patient 228 
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samples and PDX models defines a hybrid development-like continuum in Ph+ ALL and 229 

implicates promiscuous, but still coherent, developmental transcriptional states. 230 

 231 

Hybrid development states are associated with treatment response and restricted 232 

mutation acquisition  233 

We next asked whether shifts in this hybrid development-like continuum associated with 234 

resistance to combination TKI. Overall, progression samples were characterized by decreased 235 

hybrid population diversity, suggesting a restriction toward a single hybrid state (Figure 3A). 236 

Differential expression analysis across all PDX tumors revealed genes included in the ProB-like 237 

(e.g., SOCS2, DNTT) and HSC-hyb (e.g., CD34, ID2, CD99) signatures enriched at pre-238 

treatment while genes implicated in the more mature PreB-hyb (e.g., TCL1A, VPREB3, IGLL1) 239 

and ImmatureB-hyb (e.g., MS4A1, CD74, HLA-DRB1) signatures were up-regulated at 240 

progression, implicating a shift into later developmental stages (Figure 3B). However, not all 241 

PDX models shifted toward more mature hybrid transcriptional states at progression. DFAB-242 

25157, which progressed with mutations in ABL1 (Figure S2C; Table S3), remained dominated 243 

by ProB-like and HSC-hyb states at both pretreatment and progression compared to other PDX 244 

lines (Figures 3C & S7A). Leukemias that progressed with RAS pathway mutations either 245 

contained a majority of cells expressing PreB-hyb and ImmatureB-hyb signatures at both pre-246 

treatment and progression (CBAB-30198, DFAB-54880), or increased proportions of malignant 247 

cells with high PreB- and ImmatureB-hyb gene expression at progression (DFAB-62208; Figure 248 

S2C; Table S3). Notably, the two PDX lines that progressed with neither ABL nor RAS pathway 249 

mutations (CBAB-75914, CBAB-12402; Figure S2C; Table S3) demonstrated the strongest 250 

shifts toward more mature hybrid developmental bins. 251 

 This enrichment for more mature phenotypes at progression was a strong departure from 252 

patterns seen in Ph+ ALL treated with chemotherapy11 or imatinib,8 where progression on 253 

therapy was driven by less mature or stem-like cells. We sought corroborating evidence for this 254 

observation in our PDX trial samples using standard immunophenotyping approaches (Figure 255 

S7B; see Methods). Mirroring the transcriptional data, most pre-treatment leukemias harbored 256 

multiple subpopulations across the B cell developmental trajectory and showed a similar 257 

restriction in developmental state diversity at progression (Figures 3D & S7C). These 258 

immunophenotyping data also corroborated the overall enrichment of more developmentally 259 

mature phenotypes at progression (Figure S7C), specifically the predominance of more mature 260 

CD34-negative developmental phenotypes in leukemias that progressed with RAS pathway 261 
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mutations or no mutations (p<0.001 from Dirichlet regression for both mutation group 262 

comparisons to ABL pathway-mutated leukemias; Figures 3E, 3F & S7D).  263 

 We next sought direct clinical evidence for the relevance of developmentally-hybrid 264 

programs in resistance to combination TKI. We prospectively collected serial single-cell 265 

measurements from the bone marrow of 2 patients (n=5 individual samples, n=7,649 cells; 266 

Figure 3G; Table S6) enrolled on a phase 1 trial testing dasatinib in combination with asciminib 267 

and prednisone. Clinical activity was assessed by the reduction in bone marrow BCR::ABL1 268 

mRNA transcript levels after three cycles of treatment (day 85; NCT02081378). Samples from 269 

patient BIAB-16768 maintained a predominant population of ProB-like malignant cells over the 270 

course of treatment and entered remission before 85 days of treatment (3-log reduction in bone 271 

marrow BCR::ABL1 detected by qRT-PCR). By contrast, samples from patient DFAB-71417 272 

rapidly shifted toward later developmental hybrid states (PreB-hyb and ImmatureB-hyb) by day 273 

28 on therapy and failed to respond by day 85 (1-log reduction in bone marrow BCR::ABL1 274 

detected by qRT-PCR; Figures 3G & 3H). Combined with our PDX analysis, these results 275 

provide preliminary evidence that more mature developmentally-hybrid expression programs 276 

can drive resistance to dual ABL1 inhibition. 277 

 278 

Longitudinal monitoring of cell state and mutational co-evolution  279 

Collectively, our data nominate 3 potential routes of resistance to ABL1 inhibition in Ph+ ALL: 1) 280 

mutational reactivation of ABL signaling in progenitor-like states, 2) mutational activation of RAS 281 

signaling in later-stage hybrid states, or 3) transcriptional shifts toward later developmental 282 

hybrid states without accompanying mutational alterations. To directly explore whether these 283 

routes are recoverable at multiple timepoints during ABL1 inhibition, we next examined 284 

genotype-phenotype co-evolution by profiling single cells from pre-treatment, MRD (21 days on 285 

therapy), and progression in our PDX models, selecting individual leukemias that represent each 286 

putative mechanism of resistance (Figure 4A; DFAB-25157, ABL1 reactivation; DFAB-62208, 287 

RAS activation; CBAB-12402, no mutations). At each stage of therapy, we profiled leukemia 288 

cells using SMART-Seq2 (SS2)-based scRNA-seq to increase information capture from low cell 289 

numbers at remission and to facilitate matched single nucleotide variant (SNV) detection in the 290 

same single cells. For these longitudinal studies, we treated mice with single agent ponatinib 291 

(see Methods) since it performed equivalently to combination TKI therapy (Figure 1C) and is 292 

directly relevant to treatment being used in patients. 293 

 First, we ensured the robustness of our RF hematopoietic developmental classifier on 294 

full-length, SS2 transcriptomes from both healthy (n = 421; same donors as Figure S4) and 295 
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leukemic cells (n = 3,641; Figure S8A; see Methods). Using our RF framework, we 296 

independently derived the leukemic cellular states in our SS2 dataset (Figures S8B-D; Table 297 

S7), finding they highly correlated with our Seq-Well-derived hybrid phenotypes – specifically in 298 

early progenitor (Progenitor-like vs. HSC-hyb) and more mature (PreB-like vs. PreB-hyb and 299 

ImmatureB-hyb) leukemic cell states (Figure S8E). Given this coherence, hereafter we refer to 300 

Progenitor-like and PreB-like SS2 programs as HSC-hyb and PreB-hyb respectively for 301 

simplicity. We next detected mutated transcripts identified from bulk DNA sequencing within 302 

individual cells from our SS2 data (Figure S9A; Table S3; see Methods). The number of 303 

detected mutant transcripts in SS2 libraries was limited by the average expression of the 304 

corresponding gene, with higher rates of detection for RAS pathway single-nucleotide variants 305 

(SNVs; GNB1, NRAS, KRAS, PTPN11) compared to ABL pathway SNVs (ABL1, STAT5A) 306 

(Figure S9B). For highly expressed target genes, however, the proportion of single cells 307 

harboring mutations corresponded with the variant allele frequency measured in bulk 308 

sequencing of the same tumor (Figure S9C; Table S3), highlighting that SS2 provides sufficient 309 

SNV detection to capture the kinetics of RAS pathway mutations in our dataset. Furthermore, 310 

single-cell profiling enabled highly sensitive detection of rare malignant cells harboring mutations 311 

with less than 3% VAF from bulk sequencing, allowing comparisons of dominant and rare 312 

subclones (Figure S9C). Finally, we identified copy number variations (CNVs) in the SS2 profiles 313 

using inferCNV (see Methods). In combination with transcriptional state information, these data 314 

provided a detailed, high-resolution picture of the co-evolution of mutational and transcriptional 315 

heterogeneity in B-ALL single cells over the course of ponatinib treatment (Figures 4B & S9D-316 

F).  317 

 318 

Cell state dictates fitness and restricts growth of RAS-mutant cells in remission  319 

Using this high-resolution dataset, we first evaluated changes in hybrid developmental state 320 

frequency between pre-treatment and residual cells in each model during treatment with 321 

ponatinib (Figure 4C). CBAB-12402 was transcriptionally dynamic and demonstrated a 322 

significant shift towards a dominant PreB-hyb phenotype among MRD cells that was conserved 323 

at progression, mirroring patterns seen in the larger PDX trial for this model (Figures 3C & S9F). 324 

Transcriptional states in MRD and progression leukemia cells from DFAB-62208 displayed a 325 

minor shift forward to stronger PreB-hyb expression compared to pre-treatment. DFAB-25157 326 

was variable along the progenitor to mature phenotype continuum at both pretreatment and 327 

progression, driven by dominant HSC-hyb gene expression. A subset of cells from this model 328 
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co-expressed HSC-hyb and PreB-hyb states in MRD, albeit at much lower levels than PreB-hyb 329 

scores in the other two models (Figures S9E-G).  330 

Point mutations in NRAS and KRAS from the same leukemia cells revealed surprising 331 

dynamics across PDX models and stages of therapy (Figure 4D). We detected very low 332 

frequency RAS mutations in CBAB-12402 at pre-treatment that were not enriched at 333 

progression, in agreement with bulk DNA sequencing data that did not identify actionable driver 334 

mutations (Figure S2C; Table S3), thus implicating a “state-shift” only mechanism enabling 335 

progression. DFAB-62208 also harbored low-frequency KRAS and NRAS point mutations at 336 

pretreatment; a single NRAS-mutant, cycling cell was observed in remission and both KRAS- 337 

and NRAS-mutant clones expanded at progression (mirroring bulk sequencing data; Figure 338 

S2C; Table S3), suggesting the preexisting PreB-hyb transcriptional state was permissive for 339 

expansion of RAS-mutant clones. In DFAB-25157, we observed a significant increase in the 340 

proportion of KRAS mutant malignant cells in MRD (3 of 6 mice at MRD harbored identifiable 341 

RAS-mutant cells) compared to pretreatment leukemic cells, a finding we confirmed using bulk 342 

DNA sequencing from a separate sample (Table S3; Mouse 4H0, KRAS AF 0.75). This was 343 

surprising given that this model does not progress on therapy with emergent RAS mutations 344 

(Figures 4D & S2C). Indeed, considering both single-cell CNV and SNV clones (Figures S9D 345 

& S9E), we found no evidence of outright genetically-driven clonal selection in DFAB-25157 346 

despite the enrichment of RAS-mutant cells in remission (Figure 4E). In this case, our data 347 

suggest that RAS-family mutations in cells with a discordant developmental cell state permit 348 

survival (or persistence) in the context of ABL inhibition but confer a fitness disadvantage that 349 

suppresses their expansion.10 350 

We next interrogated the single-cell transcriptomes of remission DFAB-25157 cells to 351 

define mechanisms for this apparent state-genotype incompatibility. KRAS-mutant leukemic 352 

cells from DFAB-25157 at MRD upregulated genes that positively regulate senescence (e.g., 353 

CCL2, TOB1) and negatively regulate cell cycle (e.g., CDKN2A) compared to KRAS-mutant 354 

leukemia cells from all other time points and PDX lines (Figure 4F). To evaluate how this 355 

signature evolves over the course of therapy, we scored individual cells for these upregulated 356 

senescence-associated genes (Senescence-like score; Table S8). KRAS-mutant clones with 357 

similar senescence-like signatures were present at pretreatment in cells with co-incident HSC-358 

hyb phenotypes, whereas PreB-hyb KRAS-mutant leukemia cells across other treatment stages 359 

and PDX lines had low senescence-like scores (Figure S9G). These data suggest the fitness of 360 

RAS mutant clones is influenced by the compatibility of transcriptional state and genotype: the 361 

expression of senescence-implicated genes is restricted to HSC-hyb cells harboring RAS 362 
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mutations, whereas RAS-mutant PreB-hyb cells remain capable of entering the cell cycle 363 

(Figure 4G). Therefore, despite activation of a mitogenic oncogene that contributes to resistance 364 

to TKI in multiple contexts, developmental states restrict the expansion of these genotypes, 365 

including during deep remissions. 366 

As MRD genotypes alone could not predict clonal expansion driving progression, we 367 

sought to identify what phenotypes persist in MRD and actively contribute to progression. We 368 

binned each cell from MRD and progression into four fitness phenotypes based on their 369 

expression of senescence-like and cell cycle scores (Figure 4H). To our surprise, progression 370 

contained a significant accumulation of putatively cell cycle-arrested cells with higher 371 

senescence-like scores compared to MRD (p<0.001, KS statistic). Notably, we also observed 372 

CNV subclonal fitness plasticity in DFAB-25157, whose cells at MRD were characterized by high 373 

senescence-like scores. A cycling population of RAS-wildtype cells from one subclone emerged 374 

at progression (Figures 4I & S9H; p<0.01, Fisher’s exact test), associated with an increased 375 

abundance of that subclone at progression (Figure 4E). In contrast, RAS-mutant cells from 376 

DFAB-62208, characterized by later developmental phenotypes, were highly proliferative at 377 

progression (Figure S9H). Collectively, these data suggest that diverse Ph+ ALL genetic 378 

subclones can persist to progression and even clones with senescence-like phenotypes at MRD 379 

may expand with enhanced fitness to seed progression. Given the possibility of plasticity and 380 

the restrictions imposed by cell states on certain genotypes, these data suggest it may be difficult 381 

to predict from genetics alone the subclones that will ultimately seed relapse.  382 

 383 

Direct targeting of transcriptional programs in residual disease deepens remission 384 

In light of this complexity, we hypothesized that directly targeting transcriptional programs that 385 

enable persistence at MRD could overcome the diversity of subclones identified at remission. 386 

Using differential expression and gene-gene correlation (see Methods), we identified three 387 

expression programs in remission that persisted to progression – a Pre-BCR Signaling program, 388 

closely aligned with the PreB-hyb state (e.g., IGLL1, VPREB3), a Stress/Autophagy program 389 

(e.g., HSPA1A, UBC), and an inflammatory program (e.g., EGR1, JUN, TNF; Figure 5A; Table 390 

S9). The inflammatory program was evenly expressed across all leukemic cells in remission, a 391 

phenotype seen in other hematological diseases (28504724, 35618837; Figure S10A). The 392 

remaining expression programs were variable across MRD cells stratifying those high for the 393 

Stress/Autophagy cell state and those expressing the Pre-BCR Signaling program (Figures 394 

S10A & S10B). We considered these variable programs to test the hypothesis that targeting 395 

specific expression programs could deepen remissions. These two variable gene expression 396 
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programs split along fitness subpopulations, with leukemic cells harboring high Pre-BCR 397 

Signaling scores also scoring high for cell cycle, and leukemic cells with high Stress/Autophagy 398 

program scores enriched for senescence-like expression (Figure 5B). 399 

 We next evaluated whether these two gene expression programs could be therapeutically 400 

targeted. We paired ponatinib with either the FDA-approved SYK inhibitor, fostamatinib, to inhibit 401 

pre-BCR signaling in leukemic cells scoring highly for the Pre-BCR program, or the FDA-402 

approved p38a MAPK inhibitor losmapimod, to target leukemic cells scoring highly for the 403 

Stress/Autophagy program given the co-enrichment of p38a MAPK activation with the 404 

Stress/Autophagy program and previous work supporting crosstalk between p38 signaling and 405 

autophagy/leukemic stem cell-related phenotypes (Figure S10C).33,34,35 As a combination 406 

control, we compared transcriptional-state-directed combination therapy to dual oncogene 407 

targeting using ponatinib and asciminib (Figure 5C). We selected two PDX lines that were 408 

enriched for either variable MRD expression program: DFAB-25157, which scored highly for the 409 

Stress/Autophagy program, and DFAB-62208, which scored highly for the Pre-BCR signaling 410 

program and sat along the poised/cell cycle spectrum (Figures 5D, 5F & S10D). DFAB-25157 411 

mice treated with combination losmapimod plus ponatinib showed a significant reduction in 412 

residual disease burden compared to dual oncogene suppression, a striking comparison as 413 

DFAB-25157 tumors consistently progressed with acquired mutations in ABL1 (Figures 5E & 414 

S2C). Analogously, DFAB-62208 mice responded to ponatinib plus fostamatinib and had 415 

significantly reduced residual disease compared to dual oncogene suppression (Figure 5G). 416 

These data suggest that residual leukemia cells can be effectively targeted according to the 417 

specific transcriptional state governing persistence in remission. 418 

 419 

A biophysical workflow for low-cost, rapid coupling of genotype to developmental state 420 

in leukemia cells 421 

Our data support the importance of both mutations and overall cell state in determining leukemic 422 

cell fitness and therapeutic susceptibility at MRD. While mutations can be monitored in clinical 423 

workflows from residual leukemic cells, single-cell transcriptomics is currently difficult to scale 424 

due to the overall cost and time required for sample collection and analysis. We sought a metric 425 

that would integrate complex transcriptional information from low-input MRD samples to enable 426 

rapid determination of leukemic cell state, compatible with downstream mutational profiling.  427 

Immunophenotyping strategies of developmental cell states, especially given the very low 428 

cell numbers at MRD, is likely to be highly challenging. Alternatively, cell size characteristically 429 

decreases as healthy progenitor cells progress from HSCs to pro-B to pre-B cells, putatively 430 
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providing a label-free attribute with which to phenotype ALL cells.36 We have previously shown 431 

that measurements of buoyant mass, as measured by the suspended microchannel resonator 432 

(SMR),37 can reveal changes in cell state.38,39,40,41,42 Buoyant mass (referred to hereafter simply 433 

as mass) can be measured from live single cells with a resolution near 50 fg, which is highly 434 

precise given that the average buoyant mass of a hematopoietic cell is ~75 pg.43 Further, we 435 

have shown that coupling mass measurements to scRNA-seq from the same cell enables the 436 

determination of expression-dependent changes in cellular mass.41 Thus, we hypothesized that 437 

underlying biophysical development-like phenotypes may be conserved and sufficient to rapidly 438 

capture the developmental state of a leukemia cell.  439 

We first determined whether mass can distinguish B cell developmental states in healthy 440 

donors. By performing paired SMR-SS241 on cells flow-sorted from healthy donors into 441 

Progenitor (CFU-L; 155 cells), Pro-B (122 cells), and Immature B (105 cells) gates, we found 442 

that each stage of B cell development was characterized by distinct mass distributions, with 443 

decreasing cell mass along the B cell developmental trajectory (Figures 6A, 6B, S11A & S11B). 444 

Within each B cell developmental stage, healthy cells with higher mass also scored highly for S 445 

phase or G2/M phase cell cycle, a pattern seen across studies using SMRs within a specific cell 446 

type (Figure S11A).41,43,44 We found a strong relationship between each gene’s dependence on 447 

RF prediction scores and matched cellular mass (r = 0.88 from Pearson correlation), indicating 448 

that genes highly associated with cell mass are also most correlated to healthy B cell 449 

developmental states (Figure S11C). Consistently, in leukemic cells, genes defining the HSC-450 

hyb signature were most positively correlated with leukemic cell mass, and genes defining the 451 

PreB-hyb signature were most negatively correlated with cell mass (r = 0.90) (Figure 6C). We 452 

validated this observation across 17 additional PDX samples at the bulk level showing that the 453 

average leukemic cell mass reflects the average RF predicted state (r = 0.66) and tracks with 454 

the progression-emergent mutations for each PDX (Figure 6D). Taken together, these data 455 

support mass as a meaningful surrogate for development-associated transcriptional state in 456 

leukemia cells. 457 

Finally, we evaluated how single-cell mass could pair with genotyping to further define 458 

developmental state and mutation compatibility (Figure 6E). We compared mass distributions 459 

between RAS-mutant PDX lines with higher HSC-hyb and high senescence-like gene 460 

expression (DFAB-25157) and PDX lines with higher PreB-hyb gene expression (DFAB-62208 461 

and DFAB-54880). State-genotype discordant HSC-hyb DFAB-25157 cells were enriched for 462 

senescent-like scores and significantly higher mass than the more developmentally-mature and 463 

non-senescent DFAB-62208 and DFAB-54880, mirroring mass differences between healthy 464 
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progenitor and immature B cells (Figure 6F). Furthermore, we found a significant difference 465 

between the mass distributions of DFAB-25157 MRD cells compared to DFAB-62208 cells at 466 

MRD (Figure 6G), implicating that mass measurements reflect developmentally-relevant and 467 

therapeutically actionable heterogeneity in MRD for these leukemias (Figures 5D-G). 468 

Consequently, mass measurements appear to be sufficiently sensitive to distinguish differences 469 

in developmental state for leukemic cells, and, when assessed simultaneously with genotypic 470 

data from the same sample, may predict therapeutic susceptibility for targeting states in MRD. 471 

 472 

DISCUSSION  473 

Oncogene-directed therapy provides clear benefits to certain patient populations, yet it is equally 474 

clear that targeting cancers solely based on their mutational heterogeneity has an upper 475 

limit.45,46,47 Indeed, our phase II-like preclinical trial results reveal that even combinations of highly 476 

potent TKIs aimed at the same oncogene do not cure Ph+ ALL. While much of the preclinical 477 

and clinical data in CML and ALL have identified pathway reactivation through alterations in 478 

ABL1 as a primary mechanism of escape,1,2,3,4 our data suggest alternative pathway activation 479 

through RAS alterations also drives resistance in a significant fraction of cases. Mirroring 480 

patterns seen in patients,5 our trial also shows that a large fraction of mice engrafted with patient-481 

derived leukemias (up to 40%) progress without a clear genetic driver, warranting the exploration 482 

of alternate therapeutic strategies for these cases.  483 

 Transcriptional phenotypes have been described in AML,16 CML,13 and ALL,8 and recent 484 

studies suggest that patients with more progenitor-like leukemia cells have a worse overall 485 

prognosis and tend to respond poorly to therapy. In ALL specifically, a recent study showed that 486 

leukemias enriched for progenitor-like states have worse outcomes on imatinib.8 Our data 487 

suggest that lineage plasticity is relatively common in response to 3rd generation and 488 

combination TKI therapy, with resistant leukemia cells most frequently mimicking later stages of 489 

B cell development. This contrasts with most settings where, even in solid cancers, a canonical 490 

response to therapy is the enrichment of less differentiated cell states.48,49 Moreover, we 491 

demonstrate the importance of defining cell state and mutational associations – despite myriad 492 

mutational routes that might be predicted to confer resistance, our data suggest that specific 493 

transcriptional backgrounds may restrict leukemias to distinct subsets of escape mutations. 494 

Though these associations will need to be learned in larger cohorts and for each specific 495 

disease, this framework may represent a strategy for prioritizing the permissible transcriptional 496 

state/mutational convergences within oligo/polyclonal populations that can drive progression.  497 
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 While there is agreement on the clinical and therapeutic importance of understanding 498 

MRD, the phenotypes of the residual cells responsible for seeding progression and how to best 499 

target them remains an outstanding question in the field owing to several technical 500 

challenges.21,25 In this regard, Ph+ ALL is a tractable system, as it is feasible to isolate MRD 501 

from either blood or bone marrow of patients or xenografted mice in adequate numbers to allow 502 

for single-cell transcriptomics in addition to DNA sequencing. We found that matched genotypic 503 

and phenotypic profiling of rare MRD cells was critical for identifying three key insights about the 504 

biology of MRD and the translational potential of targeting it prior to relapse. First, the 505 

conventional wisdom proposes that not all cells at MRD can seed relapse, especially those that 506 

have exited the cell cycle or are otherwise classified as “unfit”.21,25 In contrast, we find that some 507 

CNV-defined clones expressing senescence-like genes at MRD can re-enter the cell cycle and 508 

contribute to progression. Of note, a similar phenotype has also been observed in AML treated 509 

with chemotherapy.50 Second, our discovery that senescent clones harboring RAS mutations 510 

were enriched in residual disease but did not contribute to relapse highlights the importance of 511 

understanding the cell state of mutant cells. This observation complicates current MRD 512 

evaluation strategies, as information about genotype alone will likely be insufficient to predict 513 

relapse for specific leukemias. Third, we show that co-targeting tumor-specific transcriptional 514 

programs in remission out-performs additional targeting of the same oncogene, at least with 515 

current therapeutics. This finding provides a translational rationale for identifying transcriptional 516 

phenotypes in residual disease to inform the rational selection of combination strategies. The 517 

importance of targeting cell state likely extends to other cancers where a central oncogene can 518 

be deeply inhibited, resulting in relapses that have acquired an alternate histology, including 519 

small cell relapse after androgen receptor inhibition in prostate cancer,51 squamous cell and 520 

small cell transitions  after EGFR inhibition in lung adenocarcinoma,52,53 and estrogen receptor 521 

positive relapse after HER2 blockade.54 522 

We note that the influence of an intact immune system on the developmental dynamics 523 

of Ph+ ALL is not well defined and represents a liability of our approach interrogating PDX 524 

models of leukemia in NSG hosts. We mitigated this by confirming our PDX results in serial 525 

measurements from patient bone marrow, but future efforts should include the use of humanized 526 

xenograft models and additional evaluation of primary patient specimens. Nevertheless, our 527 

identification of a central role for developmental state in Ph+ ALL has had immediate clinical 528 

implications. Our phase 1 clinical trial of dual oncogene targeting (NCT03595917) completed 529 

accrual55 and reopened as a phase 2 trial incorporating early introduction of the CD3xCD10 530 

bispecific antibody blinatumomab (anti-CD3xCD19 bispecific antibody), which should maintain 531 
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activity across the developmental states we have defined in MRD and relapse. Importantly, 532 

blinatumomab has demonstrated promising clinical activity in clearing residual disease in 533 

patients intended for consolidative allogeneic hematopoietic stem cell transplantation.56,57 534 

 Evaluating complex, non-mutational biomarkers may have significant clinical challenges. 535 

scRNA-seq is not yet a clinically-scalable assay, nor is it readily interpretable on a short time-536 

scale. For translation to clinical workflows, it will be critical to develop diagnostics that are able 537 

to assess a sample’s genotype and relevant phenotype with reasonable throughput and 538 

interpretability. For remission profiling specifically, this is further complicated by the requirement 539 

for use with low-input samples. Owing to the low-input and non-destructive nature of the SS2-540 

SMR measurement,41 we were able to acquire a unique dataset that directly links cellular mass 541 

to leukemic developmental state. These data establish that assessing complex, non-mutational 542 

biomarkers may be possible using mass as a relatively simple integrative cellular property. Our 543 

matched SMR/scRNA-seq data from normal bone marrow hints that mass variation may extend 544 

to other hematopoietic lineages as well so this approach may be applicable in diseases with 545 

significant developmental heterogeneity such as AML.16 We speculate that additional features 546 

of clinical utility in different disease contexts could come from other integrative single-cell 547 

properties such as morphology.58  548 

 In sum, we find transcriptional state controls the fitness of individual clones in MRD and 549 

dictates the landscape of progression on TKI in Ph+ ALL. We highlight the need to understand 550 

and monitor both mutational and transcriptional features in clinical pipelines to properly evaluate 551 

individual clones for their potential to drive relapse. We functionally establish the paramount 552 

importance of cell state in this context and suggest it should be prioritized for targeting in 553 

conjunction with driver oncogenes. In agreement with recent studies in solid cancers,59,60,61 our 554 

work in leukemia makes it apparent that therapies intended to convert remissions to cures should 555 

consider monitoring and targeting features outside of traditional mutational biomarkers.62  556 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

ACKNOWLEDGEMENTS 557 

This work was funded by the NIH-NCI U54 CA217377 (S.R.M., D.M.W., A.K.S.), K08 CA212252 558 

(M.A.M.), K12 HL141953-05 (M.A.M.), P30 CA14051 (A.K.S., S.R.M.), 1U2C CA23319501 559 

(A.K.S.), R35 CA231958 (D.M.W.); the Paul G. Allen Frontiers Group Distinguished Investigator 560 

Award (S.R.M., D.M.W.); the Sloan Research Fellowship in Chemistry (A.K.S.); and the Pew-561 

Stewart Scholars Program for Cancer Research (A.K.S.). The authors acknowledge assistance 562 

with targeted panel and whole exome sequencing of PDX specimens from Dr. Aaron Thorner, 563 

Dr. Anwesha Nag, and Neil Patel of the Dana-Farber Cancer Institute Center for Cancer 564 

Genomics. 565 
 566 
AUTHOR CONTRIBUTIONS 567 

Conceptualization, P.S.W., S.R.M., D.M.W., A.K.S. and M.A.M.; Methodology, P.S.W., M.L.R., 568 

A.W.N., S.S., C.P.C., L.C., S.R.M., D.M.W., A.K.S., and M.A.M; Validation, P.S.W., M.L.R., 569 

A.W.N., and M.A.M.; Formal Analysis, P.S.W., M.L.R., K.E.S., S.R., A.D., S.S., and M.A.M.; 570 

Investigation, P.S.W., M.L.R., A.W.N., A.D., S.S, H.S., N.S., M.M., H.H.A., L.B., P.D., C.S.L., 571 

K.S., J.G.R., Y.Z., F.P., N.M., L.C., A.P.A, S.V.R., A.J.G., N.C., A.V.S., K.J., H.L., R.J.K., M.M.S., 572 

M.A.M.; Resources, S.R.M., D.M.W., A.K.S., and M.A.M.; Data Curation, P.S.W., A.W.N and 573 

M.A.M.; Writing – Original Draft, P.S.W., M.L.R., A.W.N, A.K.S., and M.A.M; Writing – Review & 574 

Editing, P.S.W, M.L.R., A.W.N, L.C., A.P.A., S.S., S.V.R., M.R.L., S.R.M., D.M.W., A.K.S., and 575 

M.A.M.; Visualization, P.S.W., M.L.R., A.W.N., A.K.S., and M.A.M.; Supervision, M.A.M., 576 

P.S.W., S.R.M., D.M.W., and A.K.S.; Project Administration, P.S.W., S.R.M., D.M.W., A.K.S., 577 

and M.A.M.; Funding Acquisition, S.R.M., D.M.W., A.K.S., and M.A.M.  578 
  579 
DECLARATION OF INTERESTS 580 

S.R.M., R.J.K., M.M.S., and D.M.W. disclose equity ownership in Travera. A.K.S. reports 581 

compensation for consulting and/or SAB membership from Honeycomb Biotechnologies, 582 

Cellarity, Bio-Rad Laboratories, Fog Pharma, Passkey Therapeutics, Ochre Bio, Relation 583 

Therapeutics, IntrECate biotherapeutics, and Dahlia Biosciences unrelated to this work. P.S.W 584 

receives research funding from Microsoft. S.R. holds equity in Amgen and receives research 585 

funding from Microsoft. D.M.W. is an employee of Merck and Co., owns equity in Merck and Co., 586 

Bantam, Ajax, and Travera, received consulting fees from Astra Zeneca, Secura, Novartis, and 587 

Roche/Genentech, and received research support from Daiichi Sankyo, Astra Zeneca, 588 

Verastem, Abbvie, Novartis, Abcura, and Surface Oncology. P.S.W., A.K.S., M.A.M., S.R.M., 589 

and D.M.W. have filed a patent related to this work. 590 

Other authors – none.   591 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

  592 

B C

Days post treatment initiation

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0
42
0

0

50

100

Pe
rc

en
t a

liv
e

Vehicle (n=10)
Asciminib (n=14)
Ponatinib (n=30)
Ponatinib+Asciminib (n=34)

: p = 0.0085vs
: p < 0.001vs
: p < 0.001vs
: p < 0.001vs
: p < 0.001vs
: p = 0.70vs

E

DFAB-92612
CBAB-30198
DFAB-96061
DFAB-25157
DFAB-13601
CBAB-75728
HCAB-89433
DFAB-54880
CBAB-12402
CBAB-99093
CBAB-75914
DFAB-62208
CBAB-72204

Yes No

p1
90

p2
10

 

AB
L 

m
ut

.

RA
S 

m
ut

.

Re
la

ps
e

Pr
io

r T
KI

P
D

X

Progression

190 mice randomized
(1:2:2:1)

Asciminib
(n=38)
Ponatinib
(n=57)
Ponatinib + Asciminib
(n=57)
Vehicle
(n=38)

Pretreatment

scRNA-
seq

DNA

Flow

22

20

11

36

27

16

miceProfiling Assay

Treatment Arm

KRAS
NRAS
BRAF

ABL1
STAT5A

Prior Treatment

Treatment arm
Asciminib
Ponatinib
Ponatinib + Asciminib

Prior treatment
No
Yes

Pathway Mutations at Progression

Alteration detected
Treatment emergent
VAF increased by at
least 2X vs. untreated

Progression mice

D

A

ABL RAS Neither

Overall survival

Clinical endpoint: Day 120

Figure 1

mice

Average ABL Pathway VAF

0.00

0.15

0.30

0.45

0.60

Av
er

ag
e 

R
A

S
 P

at
hw

ay
 V

A
F

0.00 0.15 0.30 0.45 0.60

Untreated (n=13)

Progression (n=9)
Treatment status

No
Yes

Prior TKI exposure

0.00

0.005

0.01

0.00 0.005 0.01

Unmutated
PDX

Divergent mutational acquisition

Paired
PDX line (n=8)

Ph+ B Cell Acute Lymphoblastic Leukemia

Malignant
Pro/Pre B cell 

Oncogene
dependency

Targeted
small molecules 

Evolution of Resistance

Imatinib
Dasatinib

Asciminib 
Ponatinib

Single Agent Combination TKI

Only oncogene 
reactivation?

Curative?
Dominant 

mechanisms?

Mutations?
Stem-like states
ABL point 
mutations

Progression
Mutations?

Remission

Treatment arm

Asciminib 
Ponatinib Ponatinib + 

Asciminib

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Figure 1. Genetic mechanisms of resistance to oncogene inhibition in Ph+ ALL. 593 

(A) Motivation for evaluating efficacy and mechanisms of resistance to combination TKI therapy 594 

in Ph+ ALL. 595 

(B) Patient characteristics of the 13 PDX models used in the study and Phase II-like randomized 596 

in vivo trial design. Number of mice examined by genetic profiling, immunophenotyping 597 

(“Flow”), or scRNA-seq at pre-treatment and progression time points. For characteristics of 598 

patients from whom PDX lines were derived (Table S2): “TKI”=prior patient exposure to 599 

tyrosine kinase inhibitor; “relapse”=patient tumor at progression; “mut”=mutant (non-600 

BCR::ABL1); “p210” and “p190”=p210 and p190 BCR::ABL1 isoforms, respectively. 601 

(C) Overall survival across treatment arms in Phase II-like study; p-values from Cox regression 602 

analysis at clinical end-point (day 120) are indicated for each pairwise comparison between 603 

treatment arms. 604 

(D) ABL and RAS pathway detected alterations in Phase II-like study tumors at progression 605 

(n=40). Treatment emergent mutations indicated when mice from the same PDX line were 606 

profiled at pretreatment (see full alteration details in Figure S2A and Table S3). Prior 607 

treatment indicates mice whose PDX lines were derived from patients with prior TKI and 608 

chemotherapy exposure. “VAF”=variant allele frequency. 609 

(E) Average VAF for mutations along RAS (y-axis) or ABL (x-axis) pathways, averaged across 610 

mice in each PDX line at pretreatment or progression. Arrows link pretreatment and 611 

progression average VAFs from the same PDX line. PDX lines derived from patients with 612 

prior TKI exposure are outlined in black. Inset highlights a subset of PDX model timepoints 613 

where no (n=4 pretreatment, n=1 progression) or few mutations were detected in either 614 

pathway. 615 

 616 

See also Figures S1 & S2; Tables S1, S2 & S3.  617 
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Figure 2. Hybrid developmental transcriptional states define B-ALL. 619 

(A) Overview of Ph+ ALL scRNA-seq data collected from PDX lines (n=26,987 cells across 11 620 

PDX lines inclusive of 38 pretreatment and progression tumors) and patient biopsies 621 

(n=15,680 cells across 5 patients inclusive of 14 pretreatment and on-treatment tumors). 622 

(B) Unbiased factorization of leukemic scRNA-seq data with consensus non-negative matrix 623 

factorization (cNMF). Each row and column is an individual GEP and clustering is based on 624 

cosine similarity to find meta-programs (mGEPs; see Methods). “HSC”=hematopoietic stem 625 

cell; “ImmB”=Immature B. 626 

(C) Each mGEP annotated by the top 30 genes with the highest median cNMF gene spectra 627 

score across clustered intratumoral GEPs (Table S4). 628 

(D) Approach for supervised classification using a random forest (RF) classifier trained on 629 

healthy bone marrow (BM) scRNA-seq data.  630 

(E) Distribution (box plot and violin plot) of leukemia single-cell RF classification probabilities for 631 

each healthy BM cell type, ordered by median RF classification probability. 632 

“pDC”=plasmacytoid dendritic cell; “Ery”=erythroid; “Plasma”=plasma cell; 633 

“GMP”=granulocyte-monocyte progenitor; “Mono”=monocyte. 634 

(F) K-nearest neighbor (kNN) projection of all leukemia cells onto reference normal hierarchy, 635 

annotated by number of classified leukemic cells for each reference B cell lineage population. 636 

(G) Developmental marker gene co-expression in normal Pro-B cells (left) vs. leukemia cells 637 

classified as Pro-B cells (right). X-axis represents gene expression score difference between 638 

healthy HSC differentially expressed genes (undifferentiated) and the union of Pre-B and 639 

Immature B differentially expressed genes (more differentiated); y-axis represents each cell’s 640 

second highest healthy cell type marker expression score. 300 randomly-sampled single 641 

cells from each bin are shown below. P-values from ANOVA (**p<0.001) compare expression 642 

distribution in normal vs leukemic Pro-B cells for each normal cell type marker expression 643 

score (rows). 644 

(H) Leukemia cells plotted according to non Pro-B RF classification probabilities. Cells are 645 

colored by RF Pro-B classification probability (greyscale, fill) and cells are outlined by their 646 

classified cell type. 647 

 648 

See also Figures S3-S6; Tables S4 & S5.  649 
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Figure 3. Oncogene withdrawal drives convergence onto developmental hybrids. 651 

(A) Simpson’s Diversity Index (SDI) of non ProB-like hybrid population proportions in each PDX 652 

line, colored by mutation status at progression. Tied points represent paired PDX treatment 653 

stages. Median SDI for pretreatment and progression across PDX lines plotted as a line. 654 

Wilcoxon rank sum p-value (**p<0.01) reported, excluding ABL pathway mutated PDX line 655 

(outlier DFAB-25157). 656 

(B) Differentially expressed genes between PDX pretreatment and progression single-cells. 657 

Marker genes for HSC, Pro-B, Pre-B, and Immature B cell types are annotated. 658 

(C) Density of cells across the spectrum of hybrid developmental gene expression space, 659 

calculated by the difference between later-stage hybrid scores (PreB-hyb, ImmatureB-hyb) 660 

and progenitor hybrid scores (HSC-hyb). Rows are annotated by PDX line, time point, and 661 

mutation (“mut.”) status at progression. 662 

(D) SDI of flow cytometry immunophenotyped B cell lineage populations within individual PDX 663 

tumors at pretreatment and progression; median SDI indicated for pretreatment and 664 

progression tumors. **p<0.01 (Wilcoxon rank sum test). 665 

(E) Fractional representation of immunophenotyped B cell lineage populations for 42 leukemia 666 

samples from 11 PDX lines at pretreatment and progression time points. “Pre.” = 667 

pretreatment; “Prog.” = progression. Immunophenotyped population flow cytometry markers 668 

defined in Figures S7B & S7C. 669 

(F) Pretreatment and progression average immunophenotyped population proportions (as 670 

plotted in (E)) for three representative PDX lines corroborate transcriptional trends in (C); 671 

error bars indicate ±1 standard deviation when at least 3 mice were profiled. Number of mice 672 

profiled at each time point indicated for each PDX line. PDX lines are labeled based on 673 

mutation group at progression. 674 
(G) BCR::ABL1 percent mRNA qRT-PCR traces (log10(BCR::ABL/β-Actin mRNA)) from bone marrow 675 

aspirates of two patients on combination ABL1 inhibition, including one representative responder 676 
(BIAB-16768) and one non-responder (DFAB-71417), from a Phase I clinical trial (Table S6). MRD 677 
3.0 indicates trial definition of remission tumor burden (3-log reduction in bone marrow BCR::ABL1 678 
mRNA detected by qRT-PCR). Right: scRNA-seq data collected from patients at each treatment 679 
cycle time point shown on t-SNE projections. 680 

(H) Density of cells across the spectrum of hybrid developmental space, as defined in (C), 681 

compared across paired patient pre-treatment and on-treatment time point bone marrow 682 

aspirates. 683 

See also Figure S7; Table S6.  684 
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Figure 4. Developmental phenotypes restrict genotype fitness in remission. 686 

(A) Strategy for profiling three representative PDX models at pretreatment, MRD, and 687 

progression with Smart-Seq2 (SS2).  688 

(B) t-SNE visualizations for the leukemic cells collected with SS2 and labeled by PDX line (top), 689 

developmental state (middle; “dev.”=development), and detected genetic alterations (bottom; 690 

“SNV”=single nucleotide variant; “CNV”=copy number variant).  691 

(C) Density distributions of leukemia cells at pretreatment, MRD, and progression time points 692 

across HSC-hyb to PreB-hyb gene expression scores. *p<0.001 from KS test for each 693 

pairwise comparison between treatment stages. 694 

(D) Mutant or wild-type (WT) transcript detection for KRAS, NRAS, and PTPN11 within single-695 

cells. Significant mutant transcript abundance between time points are annotated; *p<0.05 696 

by Fisher exact test.  697 

(E) Dynamics of CNV sub-clonal proportions at pretreatment, MRD, and progression in DFAB-698 

25157. Pie charts represent KRAS or NRAS fraction of each sub-clone at the indicated time 699 

points. Number of cells sampled within each CNV sub-clone are reported. 700 

(F) Differentially expressed genes between DFAB-25157 KRAS-mutant cells at MRD versus all 701 

other KRAS-mutant cells, highlighting increased expression of genes implicated in 702 

senescence (Table S8). 703 

(G) RAS-pathway mutant leukemic cells plotted according to their differentiation gene expression 704 

score on the x-axis, and senescence-like gene expression score on the y-axis. Overlaid 705 

healthy progenitor, Pre-B, and Immature B cells colored by cell type. 706 

(H) Fitness landscape of cell-cycle arrested, poised, and actively cycling leukemic cells in 707 

remission. Single-cells plotted by cycling (x-axis) and senescence (y-axis) signature scores. 708 

Distributions for cells in each fitness quadrant shown (green=MRD, red=Progression; 709 

*p<0.001 reported from KS test). 710 

(I) DFAB-25157 leukemic cells from each CNV subclone ranked along senescence-like and cell 711 

cycle signature scores. Fisher’s exact test p-value reported for the origin of cycling cells 712 

(MRD vs. Progression). No cells belonged to the “poised” fitness category from either CNV 713 

subclone. 714 

 715 

See also Figures S8 & S9; Tables S7 & S8.  716 
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Figure 5. Targeting integrative cell states enhances remission.  718 

(A) Pairwise Pearson correlation of genes defining MRD states (Table S9). 719 

(B) Module scores for the Stress-Autophagy (turquoise) and Pre-BCR Signaling (dark red) states 720 

projected over single-cells at MRD. Cells are plotted along fitness quadrants as in Figure 4H 721 

by their cycling (x-axis) and senescence-like (y-axis) gene signature scores.  722 

(C) Study design for testing MRD cell-state targeting.   723 

(D) Cell fitness distribution for DFAB-25157 MRD cells. 724 

(E) DFAB-25157 MRD bone marrow disease burden assessed by flow cytometry (y-axis, relative 725 

to Ponatinib+Asciminib) in the respective treatment arms (“Asc.”=Asciminib; 726 

“Fos.”=Fostamatinib; “Los.”=Losmapimod). T-test p-values reported, comparing losmapimod 727 

and fostamatinib arms to asciminib reference. 728 

(F) Cell fitness distribution for DFAB-62208 MRD cells. 729 

(G) DFAB-62208 MRD disease burden assessed by flow cytometry as in (E). Reported t-test p-730 

values compare losmapimod and fostamatinib arms to asciminib reference. 731 

 732 

See also Figure S10; Table S9.  733 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

  734 

18.04 pg

22.7 pg

S
ca

le
d

de
ns

ity
 

11.5 pg

Mass (pg)0 65

A CB

-0.6

-0.4

-0.2

0.0

-0.2

-0.2 0.0

TCL1A
IGLL1 all genes

r = 0.52
P value = <2.2 10-16

HSC-hyb

PreB-hyb

CD34
ANXA1

Sig. genes
r = 0.90

P value = <2.2 10-16

Sig. genes

C
or

re
la

tio
n 

w
ith

 D
iff

er
en

tia
tio

n 
(R

F)

Correlation with Mass

P
re

 B
 c

el
l

P
ro

ge
ni

to
rs

HeavierLighter

D

F scRNA-seq
(Differentiation score)

Mass (pg)

Progenitors

Immature B

HSC-hybPreB-hyb

DFAB
25157

DFAB
62208

DFAB
54880

2 1 0 1 2

Immature_Bcell

Progenitors

AB_54880

AB_62208

AB_25157

Diff_Score

H
ealthy cells

P
D

X
s w

ith R
A

S
 m

ut.

1

Senescence score
1.5-1

10 20 30 40

Fitness with
RAS mut.

LowHigh HighLow

SMR
(Mass)

Leukemia Mass vs.
Differentiation gene correlation

0.2

10

15

20

25

30

-0.50 -0.25 0.00 0.25 0.50

A
ve

ra
ge

 M
as

s 
(p

g)

r = 0.66
P value = 0.004

C
FU

L
P

ro
-B

P
re

-B
Im

m B

PDX sample-averaged Mass vs.
RF prediction correlation (n = 17)

Pro-B/HSCPre-/ImmB

Average RF Prediction skew

RAS Neither

Mixed

PDX mutations

E

10

20

30

40

DFA
B-25

15
7

(P
on

.+L
os

. re
sp

on
siv

e)
DFA

B-62
20

8

(P
on

.+F
os

.re
sp

on
siv

e)

) gp( ssa
M

*

*

**

ABL

G

*

*

S
ca

le
d

de
ns

ity
 

S
ca

le
d

de
ns

ity
 

CFU-L

Pro-B

ImmB

Figure 6

Pre-sorted 
populations

Linked scRNA-seq
& RF classification

Transcriptional

= CFU-L?

Pro-B

= ImmB?

SMR

Cell Mass

Gene Expression Gene Expression

15pg 35pg

Stem-like

H
igher m

ass
Low

er m
assImmB like

Parameters 
to measure

Genotype 
phenotype 
interaction

Isolate 
leukemia cells

scRNA-seq

SMR

Mutations

State distribution

1. Genetics 2. Cell state

ABL1-
associated

RAS-
associated

ABL
RAS
none

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Figure 6. Biophysical measurements can be used as a surrogate for complex 735 

transcriptional states. 736 

(A) Schematic for evaluating the relationship between complex transcriptional state and 737 

integrative biophysical features. 738 

(B) Mass distributions from the sorted populations in (A) measured using the SMR; median mass 739 

reported. 740 

(C) Leukemia cell mass-correlated genes (x-axis) are plotted against each gene’s correlation to 741 

developmental phenotypes (RF probability for progenitor and Pre-B cell types; y-axis). 742 

Colored points mark genes included in the Progenitor and Pre-B SS2 signatures; “Sig. 743 

genes”=Leukemia developmental marker genes. 744 

(D) Average difference in RF prediction score between early and late stages of B cell 745 

development (x-axis) versus average mass for each mouse (n=17), binned by distributions 746 

in (B) and Figure S11A, and annotated by progression mutation status.  747 

(E) Proposed workflow for comparing sequencing to biophysical measurements for diagnostics.  748 

(F) Example application for pairing mutation and mass information to predict development and 749 

fitness-integrated transcriptomic state. Density spectra of (left) developmental score and 750 

(right) mass for (top) healthy progenitor cells and immature B cells, and (bottom) RAS-mutant 751 

leukemic cells in three representative PDX lines. Dotted line for mass distribution represents 752 

mean+1 standard deviation of healthy Immature B mass. Median differentiation scores or 753 

mass for each PDX line are denoted as a dot; PDX lines are colored based on their median 754 

similarity to Immature B or Progenitor differentiation scores or mass. * indicates significant 755 

difference between DFAB-25157 differentiation score or mass distributions compared to 756 

those of DFAB-62208 and DFAB-54880 (KS test, p<0.001). Individual cells are colored 757 

according to their senescence signature score. Blue shaded region is the putative zone of 758 

compatibility for RAS mutations and developmental state. 759 

(G) Mass distributions for leukemia cells at MRD from DFAB-25157 (sensitive to combination 760 

losmapimod) and DFAB-62208 (sensitive to combination fostamatinib). **p<0.001 from 761 

paired Wilcoxon test. 762 

 763 

See also Figure S11.  764 
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METHODS 765 

RESOURCE AVAILABILITY 766 

Lead Contact 767 

Further information and requests for resources and reagents should be sent to and will be fulfilled 768 

by Dr. Peter Winter (pwinter@broadinstitute.org). 769 

Data Availability 770 

The scRNA-seq data and SMR data reported in this paper will be deposited in a central data 771 

sharing repository (Genomic Data Commons) under the NCBI Database of Genotypes and 772 

Phenotypes (dbGaP). scRNA-seq digital gene expression matrices, metadata, and interactive 773 

visualization tools will additionally be available through the Alexandria Project, a Bill & Melinda 774 

Gates Foundation-funded portal (part of the Single Cell Portal hosted by the Broad Institute of 775 

MIT and Harvard). Code used for analysis will be available upon request.  776 

 777 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 778 

Generation and Use of PDXs 779 

Primary bone marrow and peripheral blood specimens were collected from patients with 780 

leukemia at the Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Boston 781 

Children’s Hospital for xenotransplantation. Additional PDXs that had already been established 782 

through the Public Repository of Xenografts (PRoXe) were utilized.27 De-identified patient 783 

samples were obtained with informed consent and xenografted under Dana-Farber/Harvard 784 

Cancer Center Institutional Review Board (IRB)-approved protocols. Nod.Cg-785 

PrkdcscidIL2rgtm1Wjl/SzJ (NSG) mice were purchased from Jackson Laboratories and handled 786 

according to Dana-Farber Cancer Institute Institutional Animal Care and Use Committee-787 

approved protocols. Salient PDX line metadata are provided in Tables S1 & S2. 788 

In vivo therapeutic studies 789 

Viably frozen Ph+ ALL xenograft cells were thawed and changed into 1X PBS before tail-vein 790 

injection at 0.5-2.0*106 cells per mouse. Engraftment was monitored by weekly peripheral blood 791 

flow cytometry beginning three weeks after injection. Blood was processed with Red Blood Cell 792 

Lysis Buffer (Qiagen #158904; Hilden, Germany) and stained with antibodies against human 793 

CD45 (APC-conjugated, eBioscience #17-0459-42; San Diego, CA, USA) and human CD19 794 

(PE-conjugated, eBioscience #12-0193-82) in 1X PBS with EDTA (2mM). Flow cytometry data 795 

were analyzed using FlowJo software (BD Biosciences; Ashland, OR, USA). Upon engraftment 796 
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– when at least 10% of cells were positive for CD45 and CD19 – mice within each PDX line 797 

underwent 1:2:2:4:1 randomization to the following arms and initiated treatment within two days: 798 

(1) sacrifice for baseline tissue interrogation; (2) ponatinib (Selleckchem #S1490; Houston, TX, 799 

USA; constituted in 25mM citrate buffer, pH 2.75) 40mg/kg via oral gavage (OG) daily; (3) 800 

asciminib (NVP-ABL001, Novartis Pharmaceuticals; Basel, Switzerland; constituted in HCl 0.1M, 801 

PEG300 30%, Solutrol HS15 6%, NaOH 0.1M, sodium acetate buffer pH 4.7 10mM) 30mg/kg 802 

OG twice daily; (4) ponatinib 40mg/kg OG twice daily plus asciminib 30mg/kg OG BID; and (5) 803 

vehicle (alternating doses of vehicle used for ponatinib and asciminib, at equivalent volumes). 804 

One mouse per active treatment arm per PDX line was sacrificed on day 7 of treatment for 805 

pharmacodynamic assessment. The remaining mice continued daily treatment under monitoring 806 

with biweekly peripheral blood flow cytometry until progression (defined as peripheral blood 807 

involvement of at least 10% on two consecutive assessments at least one week apart), weight 808 

loss of greater than 20% from pre-treatment baseline, or clinical manifestations of advanced 809 

disease, including but not limited to ruffled fur, hunched posture, hind limb paralysis, or lethargy. 810 

Progression or toxicity as defined above triggered humane euthanasia by CO2 asphyxiation, 811 

necropsy to ascertain cause of death, and post-mortem harvest of peripheral blood, bone 812 

marrow, and any soft tissue masses. Additional in vivo studies involved treatment with nilotinib 813 

(Selleckchem #S1033), which was constituted in N-methyl-2-pyrrolidone (10%) in polyethylene 814 

glycol (PEG)-300 (90%) and dosed at 50mg/kg OG twice daily. 815 

 Studies to define the in vivo activity of combination therapies targeting the biology of MRD 816 

within individual PDX lines DFAB-62208 and DFAB-25157 utilized the same xenotransplantation 817 

and engraftment monitoring scheme as previously described and the following drugs: ponatinib 818 

(as above), asciminib (as above), fostamatinib (Selleckchem #S2206-50mg), constituted in 0.1% 819 

carboxymethylcellulose sodium, 0.1% methylparaben, and 0.02% propylparaben (pH 6.5) and 820 

dosed at 25mg/kg OG thrice daily, and losmapimod (Selleckchem #S7215-50mg), constituted in  821 

1% DMSO in methylcellulose and dosed at 20mg/kg via the intraperitoneal (IP) route daily. Upon 822 

engraftment (>10% leukemia involvement of peripheral blood), individual mice underwent live 823 

femoral bone marrow aspirates under anesthesia with inhaled isoflurane delivered via precision 824 

vaporizer and underwent 1:1:1 randomization to the combination of ponatinib and asciminib, 825 

ponatinib and fostamatinib, or ponatinib and losmapimod. Animals initiated treatment within 48 826 

hours of engraftment and continued treatment for 21 days ± 3 days, at which point they 827 

underwent humane euthanasia, necropsy, and immediate post-mortem recovery of peripheral 828 

blood and bone marrow from the femur contralateral to that which was aspirated upon 829 

engraftment.   830 
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Human donors for reference 831 

Normal human bone marrow aspirates were obtained from donors who provided informed 832 

consent for tissue banking and research under Dana-Farber/Harvard Cancer Center IRB 833 

protocols and were undergoing bone marrow harvest for unrelated hematopoietic stem cell 834 

transplantation recipients. Briefly, bone marrow was collected into a Baxter bone marrow harvest 835 

collection system with diluent consisting of sodium heparin in lactated Ringers solution. Bone 836 

marrow was heparinized at a final concentration of 15-20 units/mL and filtered inline using 837 

200μm and 500μm filters. Bone marrow mononuclear cells from the heparinized, filtered product 838 

were isolated via density gradient centrifugation (Ficoll-Paque, ThermoFisher Scientific #45-001-839 

749) and subsequently underwent fluorescence-activated cell sorting (FACS) to isolate 840 

hematopoietic developmental subpopulations for Seq-Well S3 and SS2 single-cell transcriptomic 841 

profiling (see Methods Details). 842 

Phase I clinical trial 843 

Serial primary blood and bone marrow specimens were obtained from appropriately consented 844 

patients treated on a phase I, investigator-initiated clinical trial (NCT03595917) of asciminib 845 

(ABL001) in combination with dasatinib plus prednisone for adults with newly diagnosed Ph+ 846 

ALL or chronic myelogenous leukemia in lymphoid blast phase (CML-LBP). Some patients 847 

cross-consented to a Dana-Farber Cancer Institute tissue banking protocol permitting additional 848 

evaluation of primary specimens. Bone marrow was obtained at screening and after each 21-849 

day cycle through the first four cycles. Peripheral blood was obtained at screening and on days 850 

2, 4, 8, 11, 15, and 22 (±2 days) of cycle 1. Both bone marrow and peripheral blood were 851 

collected into EDTA vacutainer tubes prior to mononuclear cell isolation per standard protocols. 852 

Bone marrow and peripheral blood underwent clinical quantitative real time PCR for BCR::ABL1 853 

mRNA according to the BCR::ABL1 isoform detected at screening (p190 or p210). Curated sets 854 

of Ph+ ALL clinically annotated specimens underwent evaluation by scRNA-seq (Seq-Well S3; 855 

salient donor metadata provided in Table S6). 856 

 857 

METHOD DETAILS 858 

Quantifying BCR::ABL1 mRNA in PDX peripheral blood with qRT-PCR  859 

BCR::ABL1 mRNA levels were measured via quantitative real-time PCR (qRT-PCR) of serial 860 

peripheral blood specimens from PDX models to track kinetics of response and progression. 861 

Briefly, xenografted mice were phlebotomized for 100µL by submandibular vein laceration every 862 

two weeks. Blood was stored in RNAProtect tubes (Qiagen #76544). mRNA was isolated using 863 
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the RNeasy Protect Animal Blood Kit (Qiagen #73224) and quantified using the iScript One-Step 864 

RT-PCR Kit with SYBR Green (Bio-Rad #170-8893) on a Bio-Rad CFX96 Thermal Cycler. 865 

Synthesis of cDNAs was performed with random hexamers. Amplification of cDNAs was 866 

performed using iTaq Universal SYBR Green Supermix (Bio-Rad #172-5125) and the following 867 

oligomers:  868 

BCR::ABL1 isoform p190 forward: CAACAGTCCTTCGACAGCAG 869 
BCR::ABL1 isoform p190 reverse: CCCTGAGGCTCAAAGTCAGA 870 
BCR::ABL1 isoform p210 forward: TCCGCTGACCATCAATAAGGA 871 
BCR::ABL1 isoform p210 reverse: CACTCAGACCCTGAGGCTCAA 872 

Positive control reagents for each isoform were p190 clonal control RNA (Invivoscribe #4-873 

089-2800) and mRNA isolated from the BCR::ABL1 p210-positive cell line K562.  874 

Quantifying BCR::ABL1 mRNA in primary patient peripheral blood with qRT-PCR 875 

BCR::ABL1 mRNA was quantified in the peripheral blood of patients treated on clinical trial 876 

NCT03595917 via CAP/CLIA-approved clinical BCR::ABL1 qRT-PCR performed in the clinical 877 

molecular laboratory of Brigham and Women’s Hospital (Boston, MA).  878 

Targeted DNA Sequencing 879 

PDX models underwent mutational profiling with targeted panels. Leukemia cells were enriched 880 

from fresh primary PDX bone marrow or peripheral blood via immunomagnetic enrichment for 881 

human B cells using human CD19 MicroBeads (Miltenyi Biotec #130-050-301; Gaithersburg, 882 

MD, USA). DNA was extracted using the DNeasy Blood & Tissue kit (QIAGEN #69504) and 883 

fluorometrically quantitated using the Qubit dsDNA HS assay kit (Invitrogen #Q32854; Waltham, 884 

MA, USA) prior to use in next-generation sequencing library preparation. 885 

A hybrid-capture target enrichment panel targeting the full coding sequences of 183 886 

genes selected based on the presence of recurrent mutations in hematologic malignancies was 887 

utilized to profile most PDX models at baseline, on-treatment, and at end of study (as previously 888 

described).63  An amplicon-based clinical sequencing panel targeting hotspot regions of the 889 

oncogenes and most of the coding regions of tumor suppressor genes recurrently implicated in 890 

hematologic malignancies (total 93 genes) was employed for a subset of PDX models.64 A 891 

custom amplicon-based deep sequencing panel targeting 23 genes implicated in in B-ALL 892 

treatment resistance (ArcherDX; Boulder, CO, USA) was employed to profile PDXs progressing 893 

after BCR::ABL1 inhibition. 894 

 895 

 896 
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Whole Exome Sequencing (WES) sample preparation 897 

PDXs that progressed in absence of treatment-emergent driver alterations detected by targeted 898 

sequencing underwent whole exome sequencing using the SureSelect Human All Exon v5 kit 899 

(Agilent Life Sciences; Santa Clara, CA, USA). Briefly, 100ng of genomic DNA from each 900 

leukemia specimen as well as a control cell line (CEPH 1408) and a tail clipping from a non-901 

xenografted NSG mouse were fragmented to 250bp on a Covaris Ultrasonicator (Woburn, MA, 902 

USA). Size-selected DNA fragments were ligated to xGen v1 UDI-UMI9 adaptors (Integrated 903 

DNA Technologies; Coralville, IA, USA) during automated library preparation with a Biomek FXp 904 

liquid handling robot (Beckman Coulter; Indianapolis, IN, USA). Libraries (250ng per sample) 905 

were pooled to 750ng and captured with the SureSelect Human All Exon v5 bait set. Captures 906 

were pooled and sequenced on a HiSeq 3000 (Illumina; San Diego, CA, USA). 907 

Flow sorting of from healthy human bone marrow aspirates and PDX tumors 908 

Approximately 106 cells per sample were resuspended in PBS with 4,6-diamidino-2-phenylindole 909 

(DAPI; 0.75μg/mL) as a dead cell marker. For cell surface staining, PBS-washed cells were 910 

blocked with Fc blocker for 10 min on ice and then stained with the antibodies listed in Table S10 911 

at the manufacturers’ recommended concentrations or with an isotype control for 25 min on ice. 912 

Cells were then washed and resuspended in chilled PBS containing 0.75μg/mL of DAPI to 913 

exclude dead cells. For annexin V staining, annexin V binding buffer (BD Biosciences) was used 914 

instead of PBS, and 7-aminoactinomysin D (7-AAD; BD Biosciences) instead of DAPI. 915 

Phycoerythrin (PE)-labelled annexin V was purchased from BD Biosciences. Acquisition was 916 

performed on a LSR Fortessa flow cytometer (BD Biosciences). Fluorescence-based cell sorting 917 

was performed on a FACSAria II (BD Biosciences). FACS data were analyzed with FlowJo 918 

software (FlowJo). 919 

Cells expressing B cell lineage-defining surface proteins were enriched by FACS on a BD 920 

FACSAria II cell sorter (BD Biosciences; Franklin Lakes, New Jersey, USA) based on staining 921 

with antibodies targeting the following markers: Annexin V, CD45, CD34, CD10, CD19, CD20, 922 

and CD22. Healthy and immunophenotyped subpopulations were defined as in Figures S4A & 923 

S7B. Lymphoid progenitor sub-populations then underwent scRNA-seq via Seq-Well S3 and 924 

SS2.  925 

Sample preparation for scRNA-seq of clinical and PDX samples 926 

We used the Seq-Well S3 platform for massively parallel scRNA-seq to capture transcriptomes 927 

of single cells on barcoded mRNA capture beads.31 Briefly, a single-cell suspension of 15,000 928 

cells in 200μL RPMI media supplemented with 10% FBS was loaded onto single arrays 929 
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containing barcoded mRNA capture beads (ChemGenes). The arrays were sealed with a 930 

polycarbonate membrane (pore size of 0.01μm), before undergoing cell lysis and transcript 931 

hybridization. The barcoded mRNA capture beads were then recovered and pooled for all 932 

subsequent steps. Reverse transcription was performed using Maxima H Minus Reverse 933 

Transcriptase (Thermo Fisher Scientific EP0753). Exonuclease I treatment (NEB M0293 L) was 934 

used to remove excess primers, followed by Second Strand Synthesis using a primer of eight 935 

random bases to create complementary cDNA strands with SMART handles for PCR 936 

amplification. Whole transcriptome amplification was carried out using KAPA HiFi PCR 937 

Mastermix (Kapa Biosystems KK2602) with 2000 beads per 50-μl reaction volume. Libraries 938 

were then pooled in sets of eight (totaling 16,000 beads), purified using Agencourt AMPure XP 939 

beads (Beckman Coulter, A63881) by a 0.6× solid phase reversible immobilization (SPRI) 940 

followed by a 1× SPRI, and quantified using Qubit hsDNA Assay (Thermo Fisher Scientific 941 

Q32854). The quality of whole transcriptome amplification (WTA) product was assessed using 942 

the Agilent High Sensitivity D5000 Screen Tape System (Agilent Genomics) with an expected 943 

peak at 800 base pairs tailing off to beyond 3000 base pairs and a small/nonexistent primer 944 

peak.  945 

Libraries were constructed using the Nextera XT DNA tagmentation method (Illumina FC-946 

131–1096) on a total of 750pg of pooled cDNA library from 16,000 recovered beads using index 947 

primers with format as previously described.31 Tagmented and amplified sequences were 948 

purified at a 0.6× SPRI ratio yielding library sizes with an average distribution of 300 to 750bp in 949 

length as determined using the Agilent High Sensitivity D5000 Screen Tape System (Agilent 950 

Genomics). Two arrays were sequenced per sequencing run with an Illumina 75 Cycle NextSeq 951 

500/550 v2 kit (Illumina FC-404–2005) at a final concentration of 2.4pM. The read structure was 952 

paired end with Read 1 starting from a custom Read 1 primer containing 20 bases with a 12-bp 953 

cell barcode and 8-bp unique molecular identifier (UMI) and Read 2 containing 50 bases of 954 

transcript sequence. 955 

Sample preparation for paired SMR mass profiling and SMART-Seq2  956 

For all PDX and healthy bone marrow samples, cells were adjusted to a final 957 

concentration of 2.5*105 cells/ml to load single cells into the mass sensor array and record 958 

single-cell mass measurements, as previously described.41,65 In order to exchange buffer and 959 

flush individual cells from the system, the release side of the device was constantly flushed with 960 

PBS at a rate of 15μL per minute. Upon detection of a single-cell at the final cantilever of the 961 

SMR, as indicated by a supra-threshold shift in resonant frequency, a set of three-dimensional 962 

motorized stages (ThorLabs) was triggered to move a custom PCR-tube strip mount from a 963 
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waste collection position to a sample collection position to retrieve the cell. Each cell was 964 

dispensed in approximately 5μl of PBS into a PCR tube containing 5μl of 2× TCL lysis buffer 965 

(Qiagen) with 2% v/v 2-mercaptoethanol (Sigma) for a total final reaction volume of 10μl. After 966 

each 8-tube PCR strip was filled with cells, the strip was spun down at 1,000 g for 30 seconds 967 

and immediately snap-frozen on dry ice. Following collection, samples were stored at -80 C prior 968 

to library preparation and sequencing. 969 

Single-cell lysates were compiled from independent collections upon thawing and 970 

transferred into wells of a 0.2mL skirted 96-well PCR plate (Thermo Fisher Scientific). scRNA-971 

seq libraries were generated using SMART-Seq2 protocol.66 Briefly, cDNA was reversed 972 

transcribed from single cells using Maxima RT (Thermo Fisher Scientific) and whole 973 

transcriptome amplification (WTA) was performed. WTA products were purified using the 974 

Agencourt AMPure XP beads (Beckman Coulter) and used to prepare paired-end libraries with 975 

Nextera XT (Illumina). Single cells were pooled and sequenced on a NextSeq 550 sequencer 976 

(Illumina) using a 75 cycle High Output Kit (v2.5) with a 30bp paired end read structure. 977 

 978 

QUANTIFICATION AND STATISTICAL ANALYSIS 979 

PDX in vivo studies: survival analysis on treatment arms and with pretreatment clinical 980 

risk stratification metadata 981 

Analyses fitting a Cox proportional hazards model for overall survival (OS) and progression-free 982 

survival (PFS) outcomes on treatment arms and pretreatment clinical risk stratification 983 

categories were performed using the survival package in R.67 The following pre-clinical features 984 

included: IZKF1 deletion, 9p deletion, hyperdiploid karyotype, gain of chromosome 21, 985 

presenting white blood cell count, age, sex (if age <18 years), race, phase of disease, number 986 

of prior therapies, and pre-existing ABL1 mutation(s). Hazard ratios and p-values for PFS within 987 

pretreatment clinical risk categories were generated relative to the lowest risk group in each 988 

category (Figure S1D). 989 

WES alignment and variant calling 990 

Pooled sequenced WES samples were demultiplexed using Picard tools. Read pairs were 991 

aligned to the hg19 reference build using the Burrows-Wheeler Aligner.68 Data were sorted and 992 

duplicate-marked using Picard tools. Alignments were refined using the Genome Analysis 993 

Toolkit (GATK)69,70 for localized realignment around small insertion and deletion (indel) sites. 994 

Mutation analysis for single nucleotide variants was performed with MuTect v1.1.471 and 995 

annotated by Variant Effect Predictor.72 Indels were called using the SomaticIndelDetector tool 996 
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of the GATK. Copy number variants (CNVs) were identified using RobustCNV for autosomes.73 997 

Detected alterations are reported in Table S3 and Figure S2A. 998 

scRNA-seq sequencing alignment and quality control 999 

Sequenced Seq-Well BCL files were demultiplexed into individual sample FASTQs for Read 1 1000 

and Read 2 using the bcl2fastq pipeline on Terra, as previously described. The resultant paired 1001 

read FASTQs were aligned to the hg19 genome using the cumulus/dropseq_tools pipeline on 1002 

Terra maintained by the Broad Institute using standard settings, generating a genes by cells 1003 

count matrix for each sample.74 Low quality cells were filtered using nGene≤200, nUMI≤500, 1004 

and percent mitochondrial transcripts≤30% thresholds before merging samples; genes were 1005 

filtered if they were not expressed in at least 10 cells. 1006 

Sequenced SS2 BCL files were similarly demultiplexed using bcl2fastq and aligned to the 1007 

hg19 genome using publicly available scripts on Terra (github.com/broadinstitute/TAG-public). 1008 

Total gene counts and transcript per million (TPM) matrices were filtered to remove low quality 1009 

cells with <15% transcriptome mapping, 2,000 genes, and 45,000 mapped reads, before 1010 

continuing analysis. Genes expressed in fewer than 10 cells, as well as long non-coding RNAs 1011 

and unique hg19 reference-build variants were removed before downstream analysis.  1012 

Human healthy bone marrow reference cell type clustering and visualization 1013 

After QC filtering, 13,643 high quality cells from 7 healthy human bone marrow donors were 1014 

analyzed in Seurat v2.3.4 to classify hematopoietic cell types.75 After normalization, the top 1015 

1,500 highly dispersed variable genes were selected using the mean-variance plot method in 1016 

Seurat’s FindVariableFeatures function. ScRNA-seq data was scaled over highly variable genes 1017 

and used as input for PCA analysis. The top significant PCs, as defined by the JackStraw test 1018 

(top 25 PCs), were used as input for building a SNN graph to cluster cells by their (k=35) nearest 1019 

neighbors and for t-SNE visualization of clusters. Given the shared, continuous hierarchy of 1020 

covarying gene expression in hematopoietic development, broad cell types (progenitor, myeloid, 1021 

erythroid, B cell lineage, pDCs, T cells, and Plasmablasts) were called based on their 1022 

differentially expressed genes (identified using the Wilcox test in Seurat’s FindAllMarkers 1023 

function), and subset into individual Seurat objects for a second round of clustering to resolve 1024 

the final 13 cell types defined in Figure S4. Cell type annotations were post-hoc validated based 1025 

on biased or exclusive expression of known marker genes (Figure S4D).  1026 

SS2 healthy reference cell types were called by their confident random forest prediction 1027 

probabilities (see next section) and examination of marker genes to provide further support of 1028 

cell type identification (Figure S8B). Cell type clusters were visualized using SPRING, a tool 1029 
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that generates force-directed layouts from kNN graphs to visually preserve hierarchical 1030 

relationships between cell types.76  1031 

Unbiased identification of consensus intratumoral gene expression programs with NMF 1032 

We sought to identify common axes of covarying intratumoral gene expression within all Ph+ 1033 

ALL tumors in our dataset. First, we ran consensus NMF (cNMF) on each tumor in our dataset 1034 

(n=52 total samples, defining bone marrow and spleen samples from the same mouse as 1035 

individual tumors).77 For this analysis, we selected a consensus 1,489 variable genes across all 1036 

tumors by first identifying the top 2,500 variable genes within each individual tumor using the 1037 

variance standardized transformation method in Seurat v5.0.2 FindVariableFeatures function. 1038 

To ensure consensus variable gene selection was not biased by PDX line- or patient-specific 1039 

variable genes, as some models or donors had more tumors sampled than others, we initially 1040 

selected the top 2,000 median weighted variable genes across tumors within a PDX line or 1041 

patient, and then chose the top 2,000 median weighted variable genes across all PDX line and 1042 

patient median gene lists. 511 of these top 2,000 variable genes were removed based on non-1043 

zero expression across all 52 tumors. 1044 

cNMF (1,000 iterations) was performed on the counts matrices of each tumor utilizing the 1045 

consensus variable gene list over a range of k=3-9. All stable solutions of k, defined by a cNMF 1046 

solution silhouette score>0.8 across iterations, were evaluated for optimal k selection using the 1047 

following heuristics. We first hierarchically clustered the Jaccard Similarity of the top 50 genes 1048 

from each factor across all stable k solutions; under-clustered k solutions were nominated based 1049 

on factors that contained genes split across clusters that were hierarchically clustered in higher 1050 

k factorizations, and over-clustered k solutions were nominated based on the presence of factors 1051 

that did not hierarchically cluster with lower k factorizations or split genes across multiple lower 1052 

k factors.78 To further evaluate these hypothesized over- or under-clustered k solutions, we 1053 

scaled the data and ran UMAP projections over the top 50 genes from each factor for each 1054 

stable k solutions. We used Seurat’s AddModuleScore function over the top 50 genes from each 1055 

factor to assess whether under-clustered factors convolved expression across UMAP 1056 

subclusters of optimal k solutions, or whether over-clustered factors scored highest in the same 1057 

subcluster of cells or mostly strongly defined 1-2 cells (“junk” factor). Finally, we assessed 1058 

significant Pearson correlation of the top 50 genes in each optimal k factor over an expression-1059 

binned bootstrapped null distribution as previously described,79 removing factors that were not 1060 

significantly correlated (typically “activity”-like continuous programs in UMAP projections that, 1061 

upon inspection, actually contained sparsely expressed genes of redundant biological 1062 

annotations to other factors within that k solution). Factors from the selected optimal k that 1063 
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contained significantly correlated genes were labeled as “intratumoral gene expression 1064 

programs” or GEPs, and collated for downstream intertumoral comparisons across the entire 1065 

tumor cohort. Examples of intratumoral GEPs from representative PDX and patient tumors are 1066 

shown in Figure S3B. 1067 

From performing intratumoral cNMF on 52 tumors, we identified 166 intratumoral GEPs. 1068 

We excluded outlier GEPs by constructing a kNN graph (k=15) and filtered 40 intratumoral GEPs 1069 

using an elbow-based filtering criterion over kNN distances of each individual GEP to its nearest 1070 

neighbor. The remaining 126 intratumoral GEPs were hierarchically clustered using Ward.D 1071 

clustering over their cosine similarity to reveal 7 meta-GEPs or “mGEPs”, which we interpret as 1072 

shared intratumoral gene covariation across at least 8 individual tumors (Figure S3A). To 1073 

interpret shared gene covariation across each identified mGEP, we isolated the top 30 median 1074 

gene loadings across intratumoral GEPs within a given mGEP cluster (Figures 3C & S3A; Table 1075 

S4).  1076 

Training and interpreting the random forest classifier  1077 

Random forest is an ensemble machine learning method used for both classification and 1078 

regression. Like other ensemble models, random forests combine multiple weak classifiers, in 1079 

this case shallow decision trees, to make predictions. In this work, a random forest was used for 1080 

classification. Here, we interrogate aberrant developmental hierarchies in ALL by using random 1081 

forests to predict the nearest cell type from the normal B-cell lineage for single cells from Ph+ 1082 

ALL samples. There are inherent advantages to random forests for the Ph+ ALL classification 1083 

task. Importantly, ensemble classifiers, like a random forest, provide a distribution of class 1084 

probabilities reflecting the similarity of each cell to each cell type the model was trained on. This 1085 

is done by calculating the proportion of trees voting for a cell type for each given observation. 1086 

To generate a single prediction for a cell, the highest-class probability becomes the prediction. 1087 

The higher the probability of the chosen class, the more transcriptionally similar the cell is to that 1088 

stage of B cell development. The distribution of class probabilities itself can be used to 1089 

understand the certainty – or uncertainty – of a prediction. We leveraged this measure of 1090 

uncertainty in predictions to evaluate how well a tumor cell fits a specific stage in B cell lineage 1091 

(Figure 2H). A tumor cell with a more uniform distribution of probabilities over classes likely 1092 

shares transcriptional features with many a wider range of stages of B cell development, 1093 

potentially indicating a more aberrant cell from normal development. Second, ensemble 1094 

approaches tend to be more robust to overfitting, which is necessary when applying a model 1095 

trained on sorted, healthy populations of cells to evaluate aberrant leukemic cells. Finally, 1096 

because random forests are nonparametric models, they also are highly flexible to input feature 1097 
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scale and variance. This makes the approach particularly suited to raw count matrices output by 1098 

various scRNA-seq technologies used.  1099 

Here, we trained a random forest on sorted cells from the B cell lineage using 15,000 1100 

genes with detected expression in more than 10 cells as input features. Random forests were 1101 

implemented using R version 3.5.1 using the caret package for training infrastructure.80 The 1102 

ranger implementation of random forests was used.81 Hyperparameter search over ranger 1103 

parameters (the number of randomly selected features considered for splitting at each tree node 1104 

and the rule used for splitting) was done via 10-fold cross-validation (CV). The model achieved 1105 

an accuracy of 94±0.006% on 10-fold CV with optimal parameters. The final model used the full 1106 

training set of 13,643 cells. Results of 10-fold cross validation are provided in Figure S5A. The 1107 

model was also evaluated on an external testing set of Seq-Well generated healthy bone marrow 1108 

scRNA-seq transcriptomes,16 and achieved performance of average AUC=0.99 over all 13 cell 1109 

types (Figure S5C). To interpret features being used to make predictions by the classifier, we 1110 

used permutation importance tests. Permutation importance measures the impact of randomly 1111 

shuffling feature values on the performance of a model measured as accuracy and decrease in 1112 

Gini impurity. Specifically, a computationally accelerated heuristic method was used that 1113 

constructs a null distribution from features that have importance values close to zero, limiting the 1114 

need for randomly shuffling all features independently to evaluate significance.82 The results of 1115 

feature importance defining marker genes segregating the 13 cell types can be found in Figure 1116 

S5B. 1117 

Generating Tumor Hybrid Scores and assigning leukemia cells to hybrid populations 1118 

Tumor Hybrid gene signatures were generated as previously described.16 First, normalized gene 1119 

expression values were correlated to RF cell type classification probabilities along B cell 1120 

progenitor cell types (HSC, Pre-B, and Immature B). Pro-B RF probability correlations were 1121 

excluded; since most leukemic cells were dominantly classified as Pro-B with secondary 1122 

classifications along B cell lineage cell types, genes that highly correlated to Pro-B RF 1123 

probabilities were not Pro-B-specific. To ensure that genes in each hybrid population signature 1124 

were specific and unique to HSC, Pre-B, and Immature B cell types, the second-highest cell type 1125 

correlation coefficient was subtracted from the highest correlation coefficient for a given cell type. 1126 

Additionally, to ensure that cell type signatures were not obfuscated by cell cycle, positive 1127 

correlation values of genes with cell cycle scores were subtracted from the highest correlation 1128 

coefficient of a given cell type. After performing these corrections, the top 30 correlated genes 1129 

to HSC, Pre-B, and Immature B cell types were included in their respective hybrid gene 1130 

signatures; a threshold of 30 genes was selected based on the approximate elbow in corrected 1131 
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correlation values for each hybrid signature. Likewise, Pro-B gene scores were defined by the 1132 

top 30 differentially expressed genes in healthy Pro-B cells (Figures S6A; Table S5). 1133 

Tumor cells were scored by these HSC, Pro-B, Pre-B, and Immature B gene signatures 1134 

using the Seurat v4 AddModuleScore function, and consequently assigned to hybrid populations 1135 

similarly to what has been described previously.60 Single cells were classified into HSC-like, 1136 

PreB-like, and Immature-like hybrid populations based on their highest hybrid cell type signature 1137 

score, which we required to be > 0.5 + that cell’s Pro-B score. All other cells were classified as 1138 

Pro-B like cells, which were characterized by strong Pro-B gene expression and weak or no co-1139 

expression of other cell type hybrid signature scores. The classifications based on these hybrid 1140 

score distributions and relative to their B cell lineage RF prediction probabilities is demonstrated 1141 

in Figure S6B. 1142 

Mutual information of transcription factor activities with tumor hybrids 1143 

We sought to elucidate gene programs whose activity associated with the tumor hybrid 1144 

populations defined above. Given the highly entropic co-expression of tumor hybrid signatures 1145 

with Pro-B marker genes, we utilized mutual information as a metric for the potentially non-linear 1146 

mutual dependence of gene expression with hybrid-defined developmental marker genes. Within 1147 

respective hybrid subpopulations of each individual PDX line’s pre-treatment and progression 1148 

time points, we calculated the average normalized mutual information (NMI) of all highly 1149 

expressed genes across the top 30 genes in each hybrid population signature, using raw gene 1150 

counts as input. Within each PDX sample and hybrid population, MI values between each gene-1151 

gene pair were generated using R infotheo package mutinformation function with the Miller-1152 

Madow asymptotic bias corrected empirical estimator and normalized to scale values between 1153 

0 and 1 as a relative, comparable metric between samples.83 We interpret these NMI values as 1154 

a metric for genes whose expression relatively scale with hybrid population identity. 1155 

To identify cooperatively expressed genes that are collectively mutually informed with 1156 

tumor hybrid signatures, we utilized the collectRI transcription factor accessibility database along 1157 

with the decoupleR package to in silico predict mutually informed transcription factor (TF) activity 1158 

with tumor hybrid identity.84 Averaged NMI values for each PDX sample hybrid were used as 1159 

input with the run_ulm function to estimate the linear relationship between TF-target genes and 1160 

their hybrid marker gene expression. Within each PDX samples, significant TFs were ordered 1161 

by their variance in mutually informed activity between hybrid populations, and the top 30 of 1162 

these TFs were selected for further inspection of scaled predicted activity between hybrid 1163 

subsets. NMI values and in silico predicted TF activities for each healthy reference population 1164 

(HSC for HSC-hyb, Pre-BI and Pre-BII for PreB-hyb, Immature B for ImmB-hyb) were generated 1165 
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analogously and post-hoc compared to their leukemic hybrid counterparts (subset shown in 1166 

Figure S6D), demonstrating that the majority of leukemic hybrid-defining TF activities were 1167 

conserved with their healthy counterparts, with a couple of TFs. 1168 

Defining developmental skews in Smart-seq2 PDX samples 1169 

Given the paucity of RF-classified immature B cells in the SS2 leukemic dataset (Figure S8A), 1170 

we identified genes that were Pearson correlated with Pre-B RF probabilities and with progenitor 1171 

population (HSC, GMP, Pro-Mono, Early-Erythroid) probabilities. We found that genes 1172 

correlated with progenitor RF probabilities negatively correlated with Pre-B RF probabilities in 1173 

leukemic cells and vice versa, enabling us to define a spectrum of differentiation between 1174 

progenitor and later-stage B cell developmental stages (Figures S8C & S8D). Progenitor-like 1175 

and PreB-like scores were generated by scoring leukemic cells over the top 30 genes 1176 

significantly correlated to their respective RF probabilities (Table S7). Each cell’s location on the 1177 

leukemic differentiation spectrum was defined by its (PreB-like score – Progenitor-like score). 1178 

Identifying somatic variants in full-length Smart-seq2 (SS2) scRNA-seq libraries 1179 

Each sample's SS2 FASTQ files were aligned to hg19 using STAR (version 2.6.0c) and then 1180 

sorted and indexed with SAMtools (version 1.13).85,86 16 genomic loci, nominated based on 1181 

recurrently identified SNVs from bulk RNA-seq in the genes KRAS, NRAS, PTPN11, GNB1, 1182 

ABL1, and STAT5A (Figure S9A; Table S3), were assessed for wild-type or mutant transcript 1183 

detection by a custom script utilizing the Pysam library (version 0.16.0.1).87 In particular, for each 1184 

locus of interest, each cell was marked as "NC" if there was no coverage at the locus, marked 1185 

with 0 if all overlapping reads matched the reference allele, or marked as mutant if there were 1186 

overlapping reads that did not match the reference allele. 1187 

Predicting chromosomal number variations (CNVs) in SS2 scRNA-seq libraries with 1188 

inferCNV 1189 

To identify SS2 leukemic cells harboring CNVs and in silico elucidate subclonal heterogeneity 1190 

within tumors, we estimated single-cell CNVs as previously described by computing the average 1191 

expression in a sliding window of 100 genes within each chromosome after sorting the detected 1192 

genes by their hg19 genome-defined chromosomal coordinates.88,89 We used all healthy bone 1193 

marrow SS2 cells identified above (Figure S8B) as reference normal populations for this 1194 

analysis. Complete information on the inferCNV workflow used for this analysis can be found 1195 

here: https://github.com/broadinstitute/inferCNV/wiki, using baseline input parameters for SS2 1196 

data and for the i6 HMM algorithm for confident CNV-positive or negative predictions in single-1197 

cells. 1198 
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Module scoring single-cell transcriptomes 1199 

Module scores of all gene signatures over single-cells were annotated using the Seurat v4 1200 

AddModuleScore function, which calculates the average expression levels of genes in a gene 1201 

list relative to all other genes with comparable normalized gene expression. Quiescent cells were 1202 

binned based on positive scores for a literature-derived quiescence gene signature derived from 1203 

human hematopoietic cells.90 We utilized previously established signatures for G1/S (n=43 1204 

genes) and G2/M (n=55 genes) to place each cell along this dynamic process;89 after inspecting 1205 

the distribution of scores in the complete dataset, we considered any cell > 1.5 SD above the 1206 

mean for either the G1/S or the G2/M scores to be cycling.16 Senescence scores were derived 1207 

from the top 50 genes significantly differentially expressed in the SS2 DFAB-25157 RAS-mutant 1208 

cells in remission compared to all other RAS-mutant SS2 cells (Figure 4F; Table S8). 1209 

Defining stress-autophagy, pre-BCR signaling, and inflammation transcriptional 1210 

programs at remission 1211 

To define heterogeneous, correlated transcriptional states defining PDX tumors that emerge in 1212 

MRD, we first performed differential gene expression analysis between paired pre-treatment and 1213 

MRD cells within the same PDX line to identify genes that significantly increase expression at 1214 

remission. A total of 40 MRD state-defining genes were identified based on significant 1215 

upregulation in at least two PDX-specific MRD differentially expressed gene (DEG) lists. 1216 

Performing gene-gene Pearson correlation across the expression of these 40 shared MRD-high 1217 

DEGs in all remission leukemic cells revealed three correlated modules of genes. To expand 1218 

these three modules, we identified the top 30 genes significantly correlated (>2 standard 1219 

deviations above median Pearson correlation) with the top differentially expressed gene in each 1220 

module (Table S9). Pathway enrichment of significantly correlated genes was performed over 1221 

msigDB Reactome gene sets for functional annotation, and to nominate targeted inhibitors of 1222 

state (Figures S10C).  1223 
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SUPPLEMENTARY INFORMATION 1224 

 1225 

Table S1. Clinical characteristics of patients whose tumors were used to generate PDX 1226 

models. 1227 

Related to Figure 1 1228 

Table S2. Characteristics of PDX models. 1229 

Related to Figure 1 1230 

Table S3. Detected Alterations in PDX Leukemias. 1231 

Related to Figure 1 1232 

Table S4. cNMF meta-GEP gene lists. 1233 

Related to Figure 2 1234 

Table S5. Seq-Well derived Tumor Hybrid signatures. 1235 

Related to Figure 2 1236 

Table S6. Patient characteristics and clinical trial outcomes. 1237 

Related to Figure 3 1238 

Table S7. SS2-derived Tumor Hybrid signatures. 1239 

Related to Figure 4 1240 

Table S8. Senescence-Like signature. 1241 

Related to Figures 4 1242 

Table S9. MRD State signatures. 1243 

Related to Figure 5 1244 

Table S10. Flow cytometry antibodies. 1245 

Related to Methods 1246 

Figures S1-11.  1247 
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Figure S1. In vivo PDX Phase II-like trial outcomes. 1249 

Related to Figure 1 1250 

(A) Serial peripheral blood BCR::ABL1 qRT-PCR measurements from PDX model DFAB-13601 1251 

treated with Ponatinib daily (40mg/kg/day); each line represents an individual mouse. 1252 

(B) Key trial events and outcomes for each mouse on Phase II-like trial, grouped by treatment 1253 

arm. Complete response indicates <4% peripheral blood circulating blasts detected via flow 1254 

cytometry; partial response indicates reduced peripheral blood blasts compared to 1255 

pretreatment but >1% involvement; durable response indicates complete remission past 120 1256 

days on therapy. 1257 

(C) Competing risks model comparing progression and non-progression mortality in mice by 1258 

treatment arm; p-values from a Cox regression analysis indicated for differences in 1259 

progression and non-progression outcomes between treatment arms. 1260 

(D) Hazard ratios comparing pre-clinical risk factors for progression free survival in PDX mice 1261 

(see Methods). Significant shifts (p<0.05 from Cox regression analysis) annotated in red. 1262 

Median hazard ratios plotted with error bars representing ±1 quartile; “N”=number of mice; 1263 

“HR”=hazard ratio; “CI”=confidence interval.  1264 
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Figure S2. Emergent patterns in BCR::ABL1 B-ALL mutation acquisition on TKI. 1266 

Related to Figure 1 1267 

(A) Mutational alterations of individual PDX mice on TKI therapeutic regimen, grouped by 1268 

disease stage and annotated by treatment arm (“Tx Arm”). Treatment emergent mutations 1269 

indicated when mice from the same PDX line were profiled at pretreatment. Summary of 1270 

grouped RAS or ABL pathway mutations included below. Mice are annotated for prior TKI 1271 

exposure. “MRD”=minimal residual disease; “TFs”=transcription factors. Alteration details 1272 

additionally reported in Table S3. 1273 

(B) Change in the fraction of mice on each Phase II-like trial treatment arm that harbor mutations 1274 

between progression and pretreatment. Genes along the ABL and RAS pathways are 1275 

annotated in turquoise and magenta, respectively. 1276 

(C) Change in average VAF of PDX lines at progression for mutations along the ABL or RAS 1277 

pathways compared to paired pretreatment tumors. Error bars indicate +1 standard deviation 1278 

from the plotted mean ΔVAF.  1279 
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Figure S3. Intratumoral cNMF reveals developmentally convolved gene co-expression. 1281 

Related to Figure 2 1282 

(A) cNMF program z-scored gene spectra for the top 30 metaprogram (mGEP) genes across all 1283 

intratumoral gene expression programs (GEPs; Table S4); individual GEPs are annotated 1284 

by PDX or Patient ID to show mGEP consensus across multiple donors. 1285 

(B) Representative heatmaps demonstrating intratumoral GEPs for one PDX tumor (DFAB-1286 

25157 4A0) and one patient tumor (BIAB-16768 Pretreatment). Known, healthy B cell lineage 1287 

marker genes are annotated for each GEP. 1288 

(C) Pearson correlation of GEP module score and random forest (RF) classification probabilities. 1289 

Bottom color track indicates the donor where each individual GEP was identified.  1290 
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Figure S4. Generation of healthy human bone marrow scRNA-seq dataset. 1292 

Related to Figure 2 1293 

(A) Healthy human bone marrow samples (n = 7) were flow sorted into live bulk, CFU-L (colony-1294 

forming unit low; progenitor), Prim-B, Pro-B, Pre-Pre-B, Pre-B, and Immature B populations 1295 

for scRNA-seq profiling (see Methods). 1296 

(B) Proportion of each cell type identified from the bulk (gray) or flow sorted-fraction (green). 1297 

(C) Force-directed graph (FDG) projection of healthy human bone marrow annotated by 1298 

hematopoietic cell types (n=13,643 cells). 1299 

(D) Dot plot of hematopoietic cell type marker genes. Color denotes scaled average expression; 1300 

size denotes percent expression in each scRNA-seq cell type population. 1301 

(E) FDG projection of healthy human bone marrow, annotated by donor. 1302 

(F) Donor fractional contribution to each cell type population.   1303 
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Figure S5. Random Forest Classifier accurately classifies healthy and Ph+ ALL single-1305 

cell transcriptomes. 1306 

Related to Figure 2 1307 

(A) 10-fold cross-validation of each healthy reference cell type during RF training. 1308 

(B) Top 200 RF features ranked by permuted feature importance, grouped by healthy reference 1309 

cell type (randomly down-sampled n=100 cells). 1310 

(C) Receiver Operating Characteristics (ROC) curves for RF classification of test scRNA-seq 1311 

bone marrow dataset;16 area under the ROC curve (AUC) values listed in inset for each cell 1312 

type. 1313 

(D) Shannon Diversity Index (SDI) of classification probabilities versus number of unique 1314 

molecular identifier (UMI), number of genes, and percent mitochondrial transcripts for all 1315 

leukemic cells. Cells removed from analysis due to highest non-B cell lineage classification 1316 

are outlined in red and colored by misclassified cell type. Significant shifts in distribution 1317 

between non-B lineage and B-lineage single-cells, as defined by a Kolmogorov-Smirnov 1318 

(KS) test, reported (*p<0.001).  1319 

(E) Pearson correlation over gene expression of top 2,000 highly-variable genes from healthy 1320 

reference dataset across healthy and malignant hybrid cell type subpopulations.  1321 
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Figure S6. Defining Ph+ ALL developmental tumor hybrid populations. 1323 

Related to Figure 2 1324 

(A) Developmental hybrid signatures defined by the top 30 genes correlated to RF prediction 1325 

scores for each normal B-lineage cell type (Table S5). Average expression of signature 1326 

genes across leukemic hybrid populations. 1327 

(B) Classification of leukemic hybrid populations based on random forest (RF) classification 1328 

probabilities and hybrid signatures (see Methods). RF prediction probabilities, cycling or 1329 

quiescent status, and PDX line or Patient ID annotated for each cell. 1330 

(C) Leukemic hybrid subpopulations projected onto RF prediction probability axes, as in Figure 1331 

2H. Densities of leukemia cells from each hybrid population projected over the landscape of 1332 

all leukemia cells in the scRNA-seq dataset (plotted in grey). 1333 

(D) Scaled in silico predicted transcription factor (TF) activity over genes associated with 1334 

developmental hybrid gene signatures (see Methods). Scaled TF activity scores shown in 1335 

human reference samples (green) and PDX lines at pretreatment (grey) and progression 1336 

(red), subset to TFs whose predicted activity scale with HSC, Pre-B, and Immature B RF 1337 

classification probabilities in leukemic cells. Healthy reference Pre-BI and Pre-BII 1338 

populations plotted independently within Pre-B.  1339 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 58 

  1340 

B

C

0.00

0.25

0.50

0.75

1.00
Treatment Status

Pretreatment

Progression

Fr
ac

tio
n 

of
 P

D
X

 T
um

or

CFU−L

Prim
-B

Pro−
B

Pre−
Pre−

B
Pre−

B

Abe
rra

nt 
1

Abe
rra

nt 
2

Im
matu

re 
B

CD45

CD10
CD19

CD22
CD20

CD34

Fl
ow

 G
at

e
A

0 50 100 150 200 250 300 350

scRNA-seq profiling date post-treatment initiation (days)

DFAB-25157

CBAB-75914

CBAB-30198

DFAB-54880

DFAB-62208

HCAB-89433

CBAB-75728

CBAB-99093

DFAB-13601

CBAB-72204

CBAB-12402

RAS pathway
None

ABL pathway

Mutation at
Progression

mut. PDX Line

ProgressionPretreatment

Ponatinib
Ponatinib + Asciminib
Vehicle

Asciminib
Treatment Arm

HSC-hybImmatureB-hyb

PreB-hyb ProB-like

Progression

Treatment arm

C
B

A
B

-7
59

14
 #

2B
3

U
nt

re
at

d
C

B
A

B
-7

59
14

 #
2A

11
P

ro
gr

es
si

on

SSC SSC CD10 CD20CD10

SSC SSC CD10 CD20CD10

Human Leukocytes
(CD45+)

Early Progenitors
(CD34+ vs. CD34-)

CFU-L, Prim-B, Pro-B
(CD34+: CD10 vs. CD19)

Pre-Pre B, Later Stages
(CD34-: CD10 vs. CD19)

Pre-B, Immature B
(CD10-/19+: CD20 vs. CD22)

SSC CD10SSC CD10 CD20

8-ImmB7-Pre B*

1-CFU-L

2-Prim-B 3-Pro B 5-Pre-Pre B

Non-LymphoidN
or

m
al

 H
um

an
C

or
d 

B
lo

od

1-CFU-L

3-Pro B2-Prim-B 5-Pre-Pre B

4-Aberrant 1

7-Pre B*

6-Aberrant 2

2-Prim-B 5-Pre-Pre B

4-Aberrant 1

7-Pre B*

6-Aberrant 2

3-Pro B

1-CFU-LC
D

45

C
D

22

C
D

19

C
D

19

C
D

34

0.00

0.25

0.50

0.75

1.00

CFU−L

Prim
-B

Pro−
B

Pre−
Pre−

B
Pre−

B

Im
matu

re 
B

Abe
rra

nt 
1

Abe
rra

nt 
2

Fr
ac

tio
n 

of
 P

D
X

 T
um

or

PDX Tumor Composition at Progression
**
***

Mutation status
ABL pathway
RAS pathway
Neither

***
***

D

Supplemental Figure 7
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 59 

Figure S7. Transcriptional and immunophenotype shifts on therapy. 1341 

Related to Figure 3 1342 

(A) Hybrid scRNA-seq population distributions for each profiled pretreatment and progression 1343 

PDX mouse, annotated by treatment arm and time on treatment. 1344 

(B) Flow sorting gating strategy for B cell progenitor populations on a representative healthy 1345 

human umbilical cord blood sample, PDX pre-treatment tumor, and PDX progression tumor 1346 

(representative PDX=CBAB-75914). 1347 

(C) Fraction representation of PDX pretreatment and progression tumors across 1348 

immunophenotyped B cell progenitor-like populations. Individual tumor immunophenotyped 1349 

population fractions plotted as points; bars represent average tumor fraction within each 1350 

immunophenotyped population at pretreatment or progression time points, including error 1351 

bars for ±1 standard deviation. Surface markers used for flow gating of each population, as 1352 

shown in (B), annotated below. 1353 

(D) Fraction of PDX tumor at progression of each immunophenotyped B cell progenitor-like 1354 

population, grouped by mutation status at progression; bars represent average tumor 1355 

fraction, with error bars for ±1 standard deviation. Significant p-values from Dirichlet 1356 

regression noted; **p<0.01 and ***p<0.001.  1357 
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Figure S8. Random Forest (RF) Classifier recovers developmental structure in Smart-1359 

Seq2 single-cell transcriptomes. 1360 

Related to Figure 4 1361 

(A) Proportion of RF cell type classifications across all Smart-Seq2 (SS2) healthy and leukemic 1362 

cells. 1363 

(B) Single-cells ordered by RF prediction probabilities from progenitor cell types to differentiated 1364 

B cell types, and annotated by flow sort gate (as in Figure S4A). Below, scaled expression 1365 

of the top 10 RF prediction-correlated genes in developmentally-ordered healthy cells. 1366 

(C) Genes correlated to Pre-B RF prediction (x-axis) and genes correlated to Progenitor RF 1367 

prediction are negatively correlated with each other; rho and p-value from Pearson 1368 

correlation noted. Colored points represent the top 30 progenitor and Pre-B correlated genes 1369 

used to define the SS2 developmental spectrum. 1370 

(D) Leukemic SS2 single-cells ranked by Progenitor-like score, annotated by B cell lineage RF 1371 

prediction probabilities. Below, scaled expression of top 30 Progenitor-like and PreB-like 1372 

signature genes (Table S7). 1373 

(E) Pearson cross-correlation of RF cell type-correlated gene signature scores derived from Seq-1374 

Well and SS2 show cross-modality concordance. For clarity, SS2 signatures are hereafter 1375 

referenced as “HSC-hyb” for Progenitor-like scores, and “PreB-hyb” for PreB-like scores.  1376 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 62 

  1377 

Mutant
detected

WT
detected

A

B

Bulk identified
recurrent mutations

12:25378562
12:25398284
12:25398280
12:25398281

KRAS
1:115258744
1:115258748
1:115256532

NRAS
9:133748283
9:133738357
9:133750307
9:133748272
9:133738364
9:133748414

ABL1

1:1737916
GNB1PTPN11

12:112926909
STAT5A

12:112922909

0.00

0.04

0.08

0.3 0.4 0.5 0.6 0.7 0.8 0.9
avgExpression

Pe
rL
oc
us
D
et
ec
tio
n_
ra
te

Locus detection rate in
Leukemia cells

Av
er

ag
e 

pe
r l

oc
us

 d
et

ec
tio

n 
ra

te
(M

ut
an

t o
r W

T 
re

ad
s)

Average Gene Expression

ABL1

STAT5A

PTPN11

KRAS
NRAS

GNB1r = 0.92
P value = 0.008

D

3 3

Signature Score
-2 2

C

KRAS

NRAS

ABL1

GNB1

PTPN11

CNV
detection

HSC-hyb
PreB-hyb

Cycling

DFAB-25157
CBAB-12402
DFAB-62208
DFAB-54880

2,156 cells

2A0
4A1

1B3

DFAB-25157 Mouse: 2A0
Bulk AF
NRAS: 0

72
 c

el
ls

38
 c

el
ls

K
R

A
S

N
R

A
S

A
B

L1
G

N
B

1
P

TP
N

11

2A0
4A1

1B3

70
 c

el
ls

Single-cell Freq

KRAS: 0
NRAS: 0.07

KRAS: 0

DFAB-25157 Mouse: 4A1
Bulk AF
NRAS: 0

Single-cell Freq

KRAS: 0
NRAS: 0

KRAS: 0

K
R

A
S

N
R

A
S

A
B

L1
G

N
B

1
P

TP
N

11

DFAB-62208 Mouse: 1B3
Bulk AF
NRAS: 0.02

Single-cell Freq

KRAS: 0.33
NRAS: 0.06

KRAS: 0.48

RAS mutant leukemia cells
DFAB-25157 MRD

KRAS
NRAS

Other cells and stages

DFAB25157

Senescence-like

HSC-hyb

PreB-hyb

85 cells 80
Pretreatment cells

2 MRD cells

152 Progression cells

3 3

Signature Score
-2 2

Mutations

PDX

Signature
Scores

G

E

Mutant
detected

WT
detected

Mutant detected

WT detected

Copy number state
Loss Gain

Leukemia Cell Genetic Heterogeneity
Chr 1 22

K
R

A
S

N
R

A
S

A
B

L1

474CBAB-12402

DFAB-62208

DFAB-25157

CBAB-75914

DFAB-96061

DFAB-54880

1

2

G
N

B
1

P
TP

N
11

n

460

499

329

128

90

175

C
el

ls

tSNE2

tS
N
E1

Pretreatment 
MRD
Progression

tSNE2

tS
N
E1

F

Disease Stage

CBAB-75914
DFAB-96061
Co-mutant

D
FA

B
-6

22
08

D
FA

B
-2

51
57

C
B

A
B

-1
24

02

Mutant
detected
WT
detected

Single cell SNVs

n=389; x=4
n=266; x=3
n=168; x=1

n=287; x=4
n=83; x=2
n=240; x=4

n=1,085; x=14
n=196; x=6
n=484, x=7

n = cells, x = mice

S
N

V
 d

et
ec

tio
n

PDX line
SNV detection

PDX line

Supplemental Figure 9

Clone
1

Clone
2

−1

0

1

0 1 2 3
Cycling Score

S
en

es
ce

nc
e-

lik
e

0 1 2 3
Cycling Score

S
en

es
ce

nc
e-

lik
e

WT
RAS mut.

−1

0

1

H DFAB-25157 DFAB-62208

WT
RAS mut.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.06.597767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/


 63 

Figure S9. SS2 enables co-detection of mutations and transcriptome in leukemic single-1378 

cells. 1379 

Related to Figure 4 1380 

(A) Summary of recurrently-identified RAS-pathway and ABL-pathway mutation loci from bulk 1381 

targeted sequencing across PDX lines that were aligned for mutation detection in SS2 1382 

FASTQs (see Methods; Table S3). 1383 

(B) For genes with recurrently-identified mutations, Pearson correlation of average gene 1384 

expression and normalized mutation-locus detection rate (either mutant or wild-type reads). 1385 

(C) Mutant and wild-type transcripts detected in SS2 single-cell transcriptomes from three 1386 

representative PDX tumors; detected mutant transcript frequency in single-cells matched 1387 

bulk VAF. 1388 

(D) Single-cell CNV profiles across each PDX line, including instances of CNV subclonal 1389 

heterogeneity, paired with SS2-detected SNVs. 1390 

(E) SS2 single-cells within each profiled PDX line ordered by HSC-hyb expression scores, as 1391 

defined in Figure S8D. Cycling status, CNV detection, and detected mutant and wild-type 1392 

transcripts are annotated. Co-mutant indicates single-cells where RAS and ABL pathway 1393 

mutations were detected. 1394 

(F) t-SNE projection of SS2 single-cells from representative PDX lines CBAB-12402, DFAB-1395 

62208, and DFAB-25157, colored by treatment time point. Number of SS2-profiled cells and 1396 

mice at each time point denoted (n=cells, x=mice). 1397 

(G) All RAS-pathway mutant leukemic single-cells grouped by three treatment timepoints, 1398 

annotated by KRAS or NRAS mutant transcript detection, and ordered by HSC-hyb signature 1399 

scores within SS2 single-cells from DFAB-25157 and non-DFAB-25157 PDX lines 1400 

demonstrates association between senescence-like and HSC-hyb gene expression scores 1401 

across PDX lines and treatment stages. 1402 

(H) Cells from DFAB-25157 and DFAB-62208 at MRD and Progression, plot along fitness 1403 

quadrants as defined in Figure 4H, with RAS-mutant leukemia cells annotated in red.   1404 
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Figure S10. Targeting integrative cell states enhances remission.  1406 

Related to Figure 5 1407 

(A) All MRD single-cells ordered by Pre-BCR Signaling MRD state scores. CNV and SNV 1408 

mutation status annotated for each cell, along with cycling and quiescent status. P-values 1409 

reported from Fisher exact test comparing abundance of KRAS-mutant, quiescent, and/or 1410 

cycling MRD cells with dominant Stress/Autophagy (“Stress/Auto.”) expression scores to 1411 

those with dominant Pre-BCR Signaling expression scores. 1412 

(B) Correlation between Stress/Autophagy and HSC-hyb gene expression, versus Pre-BCR 1413 

signaling and PreB-hyb gene expression. Cycling cells annotated in red. 1414 

(C) Pathway enrichment false discovery rate (FDR) q-values for the top 100 genes in the 1415 

Stress/Autophagy MRD state. 1416 

(D) Boxplot of relative MRD program (Pre-BCR Signaling – Stress/Autophagy) in MRD cells from 1417 

DFAB-25157 and DFAB-62208; single-cell scores from each PDX-line plotted as individual 1418 

points.  1419 
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Figure S11. Mass correlates with developmental states and cell cycle. 1421 

Related to Figure 6 1422 

(A) Mass of healthy reference SS2 cells, binned by random forest-classified cell type and 1423 

annotated by cell-type marker gene expression. Mean mass for each cell type plotted as a 1424 

line. 1425 

(B) Force directed graph (FDG) visualization of healthy SS2 cells, annotated by cell type (top) 1426 

and by cell mass (bottom); dot size indicates cell mass. 1427 

(C) Mass-correlated genes in healthy SS2 cells on the x-axis, versus the difference between 1428 

genes correlated with RF progenitor and Pre-B cell types in healthy SS2 cells on the y-axis. 1429 

Colored points denote marker genes for each cell type. R and p-value denote Pearson 1430 

correlation between x- and y-axis indicated gene correlations.  1431 
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