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Fig. S1. Single-cell biophysical measurements utilizing the SMR. A) Schematic of the SMR
with a cell flowing through the embedded fluid channel along the cantilever, which vibrates at
resonant frequency f. B) Top, normalized vibration amplitude at the second mode. Bottom,
resonant frequency shift when a single cell flows along the cantilever in the SMR. The vertical
dashed lines indicate the positions of the cell along the cantilever, as in the schematic shown in
(A). Buoyant mass is measured at the antinode (A), and node deviation is measured at the node
(N). C) Illustration of frequency shift due to acoustic scattering. When a cell flowing in the fluid
channel interacts with acoustic fields (black waves) generated by the cantilever vibration at
resonant frequency, the particle-fluid interaction causes acoustic scatterings (blue waves), which
shifts the measured resonant frequency. Created in BioRender. Zhang, M. (2025)
https://BioRender.com/gq4p706.
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Fig. S2. Comprehensive immunophenotypic, histopathological, and biophysical

characterization of three MCL PDX models. A) Flow cytometry analysis showing the
immunophenotype of the three PDX models of MCL DFBL-96069, DFBL-39435, DFBL-91438.
B) IHC images showing human CD20, cyclin D1, P53, and Ki67 expression in spleen cells from
DFBL-96069, DFBL-39435, and DFBL-91438. All models express CD20, with strong cyclin D1
and Ki67 nuclear expression. DFBL-39435 shows strong p53 expression, while DFBL-96069 and
DFBL-91438 have low TP53 levels. Images at 20X magnification, scale bar: 30 um. C)



Measurement of single-cell buoyant mass, volume, and density of MCL cells from three PDX
models was assessed using the fluorescence exclusion-coupled SMR. Total cell area and perimeter
were evaluated with the Amnis® Imaging Flow Cytometer. The median (Mdn) and coefficient of
variation (C.V) are indicated next to each graph.
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Fig. S3. Single-cell trapping on the SMR for repeated mass and stiffness measurement of an
individual cell. A) Schematic of single bead/cell trapping on the SMR. Single-cell mass and
stiffness is repeatedly measured as the bead/cell flows back and forth through the vibrating
cantilever. To evaluate the technical interquartile ranges (IQRs) for mass measurements, we
utilized 10 um polystyrene beads (B) and naive B cells isolated from human PBMCs (C). To
evaluate the IQRs for stiffness measurements, we used L1210 (D) and naive B cells isolated from
human PBMCs (E). For assessing the technical IQR of mass measurements, the polystyrene bead
is preferred over cell lines. This is because cell mass can vary during trapping (F) (64) —cells may
accumulate mass as they grow or lose mass if apoptosis is induced —whereas the bead’s mass
remains constant throughout the experiment (G). In contrast, when evaluating the technical IQR
for stiffness measurements, cell-based samples provide a more representative range. Polystyrene
beads are significantly stiffer than cells, meaning their stiffness values do not fall within the same
range as those of the cells. The stiffness measurements from single-bead trapping data are available
in our previous publication, Kang et al. (2019) (24). Additionally, since the technical IQR for
stiffness differs between large and small cells, the L1210 cell line was chosen to represent larger
cells (approximately 10-12 um in diameter), while naive B cells represent smaller cells
(approximately 6 um in diameter).
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Fig. S4. Quality control metrics of scRNA-Seq data. A) Percentage of hemoglobin subunit beta
(HBB) gene expression, B) Number of reads per cell, C) Percentage of mitochondrial reads, D)
Alignment rate to human genome (Hg19), and E) Alignment rate to mouse genome (mm10) of
human-enriched cells from DFBL-96069, DFBL-39435, DFBL-91438 isolated from different
tissues (SP, spleen; PB, peripheral blood; BM, bone marrow; and LIV, liver). One to three
biological replicates, each from a different mouse (M1, M2 or M3), were included per tissue. These
metrics are used to assess sequencing depth, cell viability, and contamination, ensuring the
integrity of the single-cell RNA sequencing data. F) Z-score distributions of genes correlated with
cell mass and stiffness, and genes with z-score>2.5 are selected for ontology enrichment analysis.
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Fig. S5. Biophysical correlation between mass and stiffness within individual MCL PDX
models and their associations with gene expression. A) Scatterplots show the relationship
between buoyant mass and stiffness for individual MCL cells in three PDX models (DFBL-96069,
DFBL-39435, and DFBL-91438), incorporating all cells measured from various tissues (spleen,
peripheral blood, bone marrow, and liver) as shown in Figure 2. The linear regression fits (red
dashed lines) and R? values indicate weak or negligible correlations within each model. Overlaid
heatmaps highlight the density distributions of cells in the scatterplots. B) Venn diagrams show
the number of shared genes across three PDX models via transcriptome-wide correlation analyses
within each model, among the top 100 most positively and negatively correlated genes with mass
(left) or stiffness (right).
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Fig. S6. Impact of cell cycle regulation on the buoyant mass of MCL cells. A) Pie charts
summarizing the relative proportions of cells in each cell cycle phase for the three PDX models,
illustrating variation in the cell cycle distribution across models. B) Violin plots displaying the
distribution of buoyant mass for cells in different phases of the cell cycle (GO/G1, S, and G2/M)
across three PDX models. C, D) Histograms showing changes in cell cycle distribution (left) by
flow cytometry using PI staining and single-cell mass distribution (right) measured by the SMR
after 20-hour treatment with 40 ng/mL nocodazole or DMSO in Recl (C) and Jekol (D) cells.
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Fig. S7. Detection of IgG secretion and biophysical profiling of B cells across differentiation
stages. A) Representative image of the ELISpot assay detecting total human IgG secretion in
unstimulated PBMCs and stimulated naive B cells cultured for seven days in RPMI + 10% FBS
or the ImmunoCult™ human B cell expansion media respectively. Cells were incubated in the
coated plate with RPMI + 10% FBS for 24 hours. Supernatant from the cell culture served as a
positive control, while RPMI + 10% FBS medium was used as a negative control. B)



Representative gating strategy used to characterize human primary B-cells at various
differentiation stages by flow cytometry following ex vivo activation. C) Buoyant mass vs stiffness
profiles of single-cell B cells at different stages of differentiation isolated from three healthy
donors.
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Fig. S8. BCR pathway perturbations drive changes in cell mass and stiffness in Jeko-1 cells.
A) Schematic illustrating BCR inhibition via acalabrutinib treatment (top panel) and BCR
stimulation through anti-IgM treatment (bottom panel) in Jeko-1 wild-type (WT) cells for
biophysical profiling. Created in BioRender. Zhang, M. (2025) https://BioRender.com/2vjqleu.
B) Median single-cell mass and stiffness measurements obtained using the SMR from >500 Jeko-
1 wild-type cells after 1h or 24h of ex vivo treatment with DMSO, 0.25 uM, or 0.5 uM
acalabrutinib. Data are presented as the median + SD of three biological replicates. C) Median
single-cell mass and stiffness measurements from >500 Jeko-1 wild-type cells, with or without
IgM stimulation for 10min or 24h, assessed using the SMR. Data represents the median = SD of
three biological replicates. NS: non-significant, *P < 0.05, **P < 0.01 as compared between
indicated groups (Student’s t-test).
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Fig. S9. Functional analysis of BLK and CD79A overexpression in Jeko-1 cells. A) Schematic
illustrating BCR pathway enhancement through BLK and CD79A overexpression in Jeko-1 wild-
type (WT) cells for biophysical profiling. Stable overexpression in cell lines was validated using
RT-PCR, western blot, and flow cytometry. Functional assays (cell cycle and proliferation) further
assessed GFP, BLK or CD79A-expressing cells. Created in BioRender. Zhang, M. (2025)
https://BioRender.com/q6wsjha. B) FACS analyses of GFP staining in Jekol™f* cells in

comparison to Jeko-1 wild type cells. C) Representative cell cycle distribution measured by flow
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cytometry following propidium iodine (PI) staining. D) Cell proliferation of Jeko-1 cells
overexpressing GPF, BLK or CD79A over 5 days, as measured by flow cytometry. Data are
presented as mean + SEM of n= 3. E) Histograms showing the mean £ SEM of the percentage of
PI positive cells measured by flow cytometry (n=3). F) Relative mRNA expression of BLK and
CD794 measured by RT-qPCR in Jeko-1 overexpressing GFP, BLK, or CD79A. Results are
presented as fold change normalized to GAPDH mRNA. Each bar represents the mean + SEM of
two independent stable cell lines. G) Representative images of western blot showing BLK,
CD79A, GFP and a-actinin protein in Jeko-1 overexpressing GFP, BLK or CD79A. H)
Representative images of western blot showing downstream effectors of CD79A and BLK proteins
in Jeko-1 overexpressing GFP, BLK or CD79A following LPS treatment. One representative of
two western blots is shown. Quantification of the relative expression levels of phospho-BTK
(pBTK/BTK) and phospho-PLCy2 (pPLCy2/PLCy2) are shown on the right. H) Median single-
cell mass and stiffness measurements obtained using the SMR from >500 cells of Jeko-1 wild-type
and Jeko-1 cells stably overexpressing GFP, BLK or CD79A. Data are presented as median = SD
of three biological replicates. J) Single-cell mass and stiffness measurements obtained using the
SMR from >500 Jeko-1 cells overexpressing GFP, BLK or CD79A following LPS treatment. One
representative experiment from two biological replicates is shown. ****P <(0.0001, **P < (.01 as
compared between indicated groups (Student’s t-test).
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Fig. S10. White blood cell dynamics of acalabrutinib-treated patients with MCL. Total white
blood cell (WBC) count over time in the acalabrutinib sensitive and less sensitive patient groups.
The patients were treated for 4 weeks with acalabrutinib (Acal) alone before the addition of
obinutuzumab (Obi). All patients except #0528 experience lymphocytosis after the start of
acalabrutinib. The percent WBC reduction on Acal is indicated and was calculated from the peak
level within the 30 days of Acal treatment to the end of Acal monotherapy. The pre-treatment
samples (red triangle) and the Cycle 2 day 1 (C2D1; blue diamond) samples were used in our
study.
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Fig. S11. Flow cytometry of the MCL primary samples. Flow cytometry panels used to
characterize MCL tumor cells following human B cell enrichment. Cells were isolated from
patients with MCL at pre-treatment or after four weeks of treatment with the BTKi acalabrutinib.
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Fig. S12. Cellular viability and cell cycle distribution in acalabrutinib-treated patients with
MCL. A) Percentage of viable cells measured by trypan blue after thawing. B) Cell cycle
distribution of the cells analyzed by flow cytometry following propidium iodide staining after
thawing.
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Fig. S13. Paired mass-viability assessment of MCL cells after ex vivo drug treatment via the
fluorescence exclusion-coupled SMR. A) Paired single-cell measurement of buoyant mass (x-
axis) and cell viability (indicated by ruby fluorescence intensity on the y-axis) following zombie



red staining for MCL cells from AVO patient samples. Analyses were conducted on samples
collected at pre-treatment and four weeks of in vivo treatment with the BTKi acalabrutinib. Cells
were subsequently treated ex vivo in duplicate with either acalabrutinib or DMSO for 24 hours and
analyzed using the fluorescence-coupled SMR. B) Percentage of viable MCL cells following ex
vivo drug treatment, as measured by negative zombie red staining from panel A.
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Fig. S14. Buoyant mass profiles of MCL patient samples after ex vivo acalabrutinib
treatment. Histograms showing A) the median mass or B) the single-cell mass distribution of
MCL primary samples of two acalabrutinib-sensitive and two less-sensitive MCL primary samples
at pre-treatment (left) and after four weeks of in vivo treatment with acalabrutinib (on BTKi)
(right). Cells were subsequently treated ex vivo in duplicate with either acalabrutinib or DMSO for
24 hours and analyzed using the fluorescence-coupled SMR.
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Fig. S15. Peripheral blood dynamics and single-cell mass shifts in response to pirtobrutinib
in MCL. A) Total WBC, absolute neutrophil count (ANC), absolute monocyte count (AMC) and
absolute lymphocyte count (ALC) over time in a MCL patient pre- and post- pirtobrutinib
treatment. At the pre-pirtobrutinib timepoint, strong evidence of active disease progression led to
a change in therapy. After one cycle of pirtobrutinib, the patient exhibited signs of a transient
clinical response, including recovery of neutrophils, as well as symptomatic improvements with
weight gain, increased energy, and enhanced appetite. B) Single-mass measurements of serial
peripheral blood specimens from a patient with relapsed/refractory MCL collected at pre- and post-
BTKi following four weeks of pirtobrutinib treatment. MCL and non-MCL cells were enriched
using FACS.
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Fig. S16. Clinical information and biophysical analysis of CLL patient samples treated with
acalabrutinib. A) Clinical and molecular characteristics of CLL patient samples. Bendamustine
(B), rituximab (R), fludarabine (F), cyclophosphamide (C). B) WBC counts over time in CLL
patients treated with acalabrutinib monotherapy. The pre-treatment (yellow triangle) and
progression (blue diamond) samples were used in our study. C) Bar graphs showing the median
mass measured by the SMR of three CLL primary samples at pre-treatment and progression
timepoints, followed by 24 hours of ex vivo drug treatment in duplicate with DMSO or
acalabrutinib.



Table S1. Mutational landscape of three MCL PDX models identified by hybrid capture,
target enrichment next generation sequencing of coding exons of 205 genes. (separate file)



Table S2. Gene ontology results from GSEA analysis of top genes (z-score > 2.5) correlated
with mass and stiffness across DFBL-39435, DFBL-96069, and DFBL-91438. (separate file)



Table S3. List of genes correlating with cell mass, cell stiffness and both mass and stiffness
across DFBL-39435, DFBL-96069 and DFBL-91438. (separate file)



Table S4. MCL patient’s clinical information.

Sample ID
Sex-Age

Prior
treatment for
MCL

Prior ASCT

MCL stage

ECOG
Performance
Status

Histological
subtype

Bone
marrow
involvement

Ki-67 index

TP53 status

Cytogenetics

Pathogenic
known
mutations

#0491 #0557 #0528 #0533
M-69 M-68 M-69 M-70
Inducti'on BR/R-AraC, None None None
maintenance R
Yes No No No
1 [\ [\ 1
1 1 1 0
Classic Classic Classic Classic
51% 7% 50% 76%

15-20% <30% 40% Not available
Mutated Wild-type Mutated Mutated
46,XY,del(1)(p22p13), | 46,XY,t(11;14)(q13;93 | 43,-Y,add(X)(p11.2),- | 45,XY,t(11;14)(q13;93

add(4)(g21), - 2)[4]/ 46,idem,del(9) 9 ,-10,- 2),

10,t(11;14)(913; 932), | (91293?4)[cp5)/46, 11,4(11;14)(q13;932),a | der(15;17)(q10;q10)[4]
add(13)(q22),del(14) XY[11] dd(12)(p1?2),-13,- /45,
(924932)(924932),+m 18,+2-4mar idem,t(2;13)(p13;912),
ar[8] [cp4)/45,X,Y[4)/46, -12, +mar[cp11)/46,
/46,idem,t(5;15)(q13;q XY[12] XY[cp5]

22),

add(10)(p13)[61/46,XY

[6] .nuc ish(CCND1,I

GH)x3(CC

ND1 con IGHx2-3)

[134/200]

PPM1D: NOTCH1: TP53: c.524G>A CCND1: ¢c.130T>G

c.1528_1529insA
(p.N512Kfs*16)7.1%
VAF,
c.1445delT(p.L482Rfs
*3) 1% VAF;

TP53: c.638G>A
(p.R213Q) 66.2%
VAF;

c.7541_7542delCT
(p.P2514Rfs*4) 5.3%
VAF

(p-RI75H) 95% VAF
ATM: c.901+1G>C
(splice site) 26.4%
VAF

(p.Y44D) 38.5% VAF;
TP53: c.743G>A
(p.R248Q) 65.7% VAF



Copy
number
variations

Variants of
unknown
significance

ZRSR2: c.1070_
1106del TTGGGAAGA
A
CTCCGAAAGGAGG
GAGAGGATGGGCC
AinsGC(p.F357Cfs*16
) 7.3% VAF

gain SF3B1, IDH1 (on
2q); CN-LOH TP53
(on 17p)

MPL: c.655C>G
(p.Q219E)
58.7% VAF

None detected

CDKN2A: c.106G>A
(p.A36T) 41.7% VAF

gain RAD21, MYC (on
8q); 1 copy deletion
JAK2, CDKN2A,
CDKN2B (on 9p); 1
copy deletion ABLA1,
NOTCHA1 (on 9q); gain
WT1 (on 11p); gain
ATM, amplification
KMT2A, 1 copy
deletion CBL (on
11q); 1 copy deletion
ETV6, ETNK1, KRAS
(on 12p); 1 copy
deletion FLT3 (on
13q); gain MAP2K1,
IDH2 (on 15q); CN
LOH TP53 (on 17p)

ATM: c.8293G>A
(p.G2765S) 41.2%
VAF;

CREBBP: c.1369A>G
(p.1457V) 48% VAF

1 copy deletion
DNMT3A (on 2p),
PRPF8 (on 17p),
TP53 (on 17p)

TET2: c.4787A>G
(p.N1596S) 48.3%
VAF




Table S5. Antibodies used for flow cytometry.

Catalog

Zombie Aqua Fixable Viability Kit

#423102

Antibody Clone 4 Assay(s)
. BioLegend, PDX and primary cell
Pe/Cy7 anti-human CD45RA HI100 £304125 characterization
. BD Biosciences, | PDX and primary cell
BV711 anti-human CDS LI7F12 | 4742552 characterization
. BD Biosciences, | PDX and primary cell
APC anti-human Kappa TB28-2 | 4341098 characterization
. BD Biosciences, | PDX and primary cell
PE anti-human Lambda 1-195-2 | 4642919 characterization
. BD Biosciences, | PDX and primary cell
BBS15 anti-human CD19 HIB19 #564456 characterization
. BioLegend, PDX and primary cell
APC anti-mouse CD45 30-F11 1 4103112 characterization
. BD Biosciences, o
BV421 anti-human CD27 M-T271 #560513 B cell characterization
APC anti-human CD38 HIT2 BD Biosciences, B cell characterization
#560980
Pe-Cy7 anti-human IgD 1A6-2 BD Biosciences, B cell characterization
#561314
BV711 anti-human CD24 MLs | BDBiosciences, | g o) characterization
#563401
PE anti-human CD138 MI15 BD Biosciences, B cell characterization
#561704
PerCP-Cy5.5 anti-human CD86 | 2331 | DD Biosciences, | g o characterization
#561129
PE anti-human CD86 IT2.2 BD Biosciences, B cell characterization
’ #555665
. BD Biosciences, o
AF700 anti-human HLA-DR G46-6 # 560743 B cell characterization
BioLegend, PDX, primary cell and B cells

characterization
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